Кровообращение начинается в тканях, где совершается обмен веществ через стенки капилляров (кровеносных и лимфатических).
Капилляры составляют главную часть микроциркуляторного русла, в колюром происходит микроциркуляция крови и лимфы. К микроциркулятор-ному руслу относятся также лимфатические капилляры и интерстициальные пространства.
Микроциркуляция — это движение крови и лимфы в микроскопической части сосудистого русла. Микроциркуляторное русло, по В. В. Куприянову, включает 5 звеньев: 1) артериолы как наиболее дистальные звенья артериальной системы, 2) прекапилляры, или прекапиллярные артериолы, являющиеся промежуточным звеном между артериолами и истинными капиллярами; 3) капилляры; 4) посткапилляры, или посткапиллярные венулы, и 5) венулы, являющиеся корнями венозной системы.
Все эти звенья снабжены механизмами, обеспечивающими проницаемость сосудистой стенки и регуляцию кровотока на микроскопическом уровне. Микроциркуляция крови регулируется работой мускулатуры артерий и артериол, а также особых мышечных сфинктеров, существование которых предсказал И. М. Сеченов и назвал их «кранами». Такие сфинктеры находятся в пре- и посткапиллярах. Одни сосуды микроциркуляторного русла (артериолы) выполняют преимущественно распределительную функцию, а остальные (прекапилляры, капилляры, посткапилляры и венулы) — преимущественно трофическую (обменную).
В каждый данный момент функционирует только часть капилляров (открытые капилляры), а другая остается в резерве (закрытые капилляры).
Кроме названных сосудов, советскими анатомами доказана принадлежность к микроциркуляторному руслу артериоловенулярных анастомозов, имеющихся во всех органах и представляющих пути укороченного тока артериальной крови в венозное русло, минуя капилляры. Эти анастомозы подразделяются на истинные анастомозы, или шунты (с запирательными устройствами, способными перекрывать ток крови, и без них), и на межарте-риолы, или полушунты.
Благодаря наличию артериоловенулярных анастомозов терминальный кровоток делится на два пути движения крови: 1) транскапиллярный, служащий для обмена веществ, и 2) необходимый для регуляции гемодинамического равновесия внекапиллярный юкстакапиллярный (от лат. juxta — около, рядом) ток крови; последний совершается благодаря наличию прямых связей (шунтов) между артериями и венами (артериовенозные анастомозы) и артериолами и венулами (артериоловенулярные анастомозы).
Благодаря внекапиллярному кровотоку происходят при необходимости разгрузка капиллярного русла и ускорение транспорта крови в органе или данной области тела. Это как бы особая форма окольного, коллатерального, кровообращения (Куприянов В. В., 1964).
Микроциркуляторное русло представляет не механическую сумму различных сосудов, а сложный анатомо-физиологический комплекс, состоящий из 7 звеньев (5 кровеносных, лимфатического и интерстициального) и обеспечивающий основной жизненно важный процесс организма — обмен веществ. Поэтому В. В. Куприянов рассматривает его как систему микроциркуляции.
Строение микроциркуляторного русла имеет свои особенности в разных органах, соответствующие их строению и функции. Так, в печени встречаются широкие капилляры — печеночные синусоиды, в которые поступает артериальная и венозная (из воротной вены) кровь. В почках имеются артериальные капиллярные клубочки. Особые синусоиды свойственны костному мозгу и т. п.
Пропесс микроциркуляции жидкости не ограничивается микроскопическими кровеносными сосудами. Организм человека на 70 % состоит из воды, которая содержится в клетках и тканях и составляет основную массу крови и лимфы. Лишь xls всей жидкости находится в сосудах, а остальные 4/5 ее содержатся в плазме клеток и в межклеточной среде. Микроциркуляция жидкости осуществляется, кроме кровеносной системы, также в тканях, в серозных и других полостях и на пути транспорта лимфы.
Из микроциркуляторного русла кровь поступает по венам, а лимфа — по лимфатическим сосудам, которые в конечном счете впадают в присердеч-ные вены. Венозная кровь, содержащая присоединившуюся к ней лимфу, вливается в сердце, сначала в правое предсердие, а из него в правый желудочек. Из последнего венозная кровь поступает в легкие по малому (легочному) кругу кровообращения.
Главное целевое назначение системы кровообращения — это транспорт питательных веществ к тканям и удаление клеточных метаболитов, которое осуществляется в микроциркуляторном русле. Мелкие артериолы контролируют кровоток в каждом участке тканевой капиллярной сети, а местный уровень метаболизма в тканях, в свою очередь, контролирует диаметр артериол. Таким образом, каждая ткань в большинстве случаев регулирует свой собственный кровоток в зависимости от индивидуальных потребностей. Механизмы местной регуляции кровотока подробно изложены в отдельных статьях на сайте.
Стенка капилляров очень тонкая. Она состоит из одного слоя эндотелиальных клеток и характеризуется высокой проницаемостью, по этому обмен воды, питательных веществ, метаболитов между тканя ми и протекающей кровью происходит быстро и легко.
В периферическом отделе сосудистой системы насчитывается около 10 млн капилляров с общей обменной площадью от 500 до 700 м 2 (почти 1/8 площади футбольного поля), поэтому каждая клетка организма располагается не далее чем в 20-30 мкм от кровеносного капилляра.
Микроциркуляторное русло каждого органа имеет специфическое строение и соответствует потребностям органа. Общим является то, что каждая питающая артерия, входя в орган, разветвляется 6-8 раз, прежде чем образуются мелкие артериолы с внутренним диаметром 10 15 мкм. За тем разветвляются артериолы (от 2 до 5 раз), в результате их диаметр уменьшается до 5-9 мкм.
Строение мезентериального капиллярного русла
Артериолы имеют сравнительно толстую гладкомышечную стенку, и их диаметр может меняться в широких пределах. В стенке метартериол (терминальных артериол) уже нет непрерывного мышечного слоя. Кольцевой гладкомышечный слон встречается только в отдельных участках сосуда, как показано черными точками на рисунке.
Там, где от метартериолы отходят истинные капилляры, гладкомышечные волокна окружают начальный участок капилляра. Это так называемый прекапиллярный сфинктер. Сфинктер может открывать и закры вать вход в капилляр.
Венулы обычно крупнее артериол, но имеют более тонкий и слабый мышечный слой. Несмотря на это венулы могут развивать значительное сокращение, т.к. давление в венулах гораздо ниже, чем в артериолах.
Такая типичная организация капиллярного русла встречается далеко не во всех частях сосудистой системы организма. Тем не менее, имеются общие особенности, связанные с выполнением одних и тех же функции. Самым важным является то, что метартериолы и прекапиллярные сфинктеры находятся в тесном контакте с окружающими тканями. Следовательно, уровень метаболизма в тканях посредством изменения таких показателей, как концентрация питательных веществ, конечных продуктов метаболизма, ионов водорода и др., может оказывать прямое воздействие на сосуды и контролировать местный кровоток в каждом отдельно взятом участке тканей.
Строение стенки капилляра. Обратите особое внимание на межклеточный промежуток между соседними эндотелиальными клетками. Полагают, что большинство водорастворимых веществ диффундируют через стенку капилляра по межклеточным промежуткам
а) Строение стенки капилляров. На рисунке выше показано ультрамикроскопическое строение типичных эндотелиальных клеток капиллярной стенки, которое характерно для большинства органов, но особенно для мышечной и соединительной ткани. Обратите внимание, что стенка капилляра состоит из одного слоя эндотелиальных клеток, расположенных на очень тонкой базальной мембране. Толщина стенки — всего 0,5 мкм. Внутренний диаметр капилляра (от 4 до 9 мкм) — достаточно широкий для продвижения по нему эритроцитов и других клеток крови.
б) Поры в мембране капилляра. На рисунке выше можно видеть, что в стенке капилляра имеются два типа микроскопических каналов, соединяющих внутренний просвет капилляра с окружающим пространством. Один из них представляет собой межклеточный промежуток — узкую изогнутую щель между соседними эндотелиальными клетками. В каждом межклеточном промежутке имеются отдельные белковые мостики, соединяющие эндотелиальные клетки между собой, что, однако, не мешает свободному перемещению жидкости в этом пространстве. Ширина межклеточных промежутков в норме равна 6-7 нм (60-70 ангстрем), т.е. чуть меньше, чем диаметр молекулы альбумина.
Поскольку межклеточные промежутки расположены только между эндотелиальными клетками, в сумме они составляют всего 1/1000 общей площади поверхности капиллярной стенки. Тем не менее, скорость теплового движения молекул воды, а также ионов и низкомолекулярных веществ, растворимых в воде, настолько велика, что они легко диффундируют между просветом капилляра и окружающим пространством по этим щелевидным межклеточным промежуткам.
Кроме того, в эндотелиальных клетках имеется множество микропиноцитозных везикул. Они формируются на одной поверхности клетки как впячивания плазмолеммы, заполненные плазмой или тканевой жидкостью, и медленно движутся через эндотелиальную клетку. Установлено, что отдельные везикулы могут сливаться, образуя везикулярные каналы, пронизывающие эндотелиальную клетку, как показано в правой части рисунка. Однако тщательные исследования, проведенные на лабораторных животных, доказывают, что в количественном отношении везикулярный транспорт не имеет большого значения.
в) Поры специального типа, обнаруженные в капиллярах некоторых органов. Поры в капиллярах некоторых органов имеют следующие особенности, связанные со специфическими потребностями органа.
1. В капиллярах головного мозга между эндотелиальными клетками имеются главным образом «плотные» контакты, по которым к тканям или от тканей мозга могут проходить только самые маленькие молекулы, такие как вода, кислород, углекислый газ.
2. В капиллярах печени наоборот: межклеточные промежутки между эндотелиальными клетками настолько велики, что все компоненты плазмы крови, включая белки, могут выходить из капиллярного русла в ткани.
3. В капиллярах желудочно-кишечного тракта размеры пор имеют среднюю величину по сравнению с капиллярами мышц и печени.
4. В эндотелиальных клетках капилляров почечного клубочка имеется большое количество маленьких овальных окошечек, которые называют фенестрами. Сквозь них фильтруется огромное количество низкомолекулярных веществ и ионов (за исключением крупномолекулярных белков плазмы). Таким образом, фильтрация происходит прямо через клетки эндотелия, минуя межклеточные промежутки.
Редактор: Искандер Милевски. Дата публикации: 2.12.2020
В физиологических условиях давление крови и скорость кровотока в капиллярах оказываются постоянными, что создает благоприятные предпосылки для транскапиллярного обмена (Zweifach, 1961; Shepherd, 1963; Witzleb, 1986). Вместе с тем диаметры капилляров в каждом конкретном модуле и степень кровенаполнения его капиллярных сетей и в норме отличаются гетерогенностью, что обусловливается динамикой функционального состояния прекапил-лярных сфинктеров, проявляющейся перемежающимся их открытием и закрытием.
Данные биомикроскопии свидетельствуют о том, что в капиллярах возможно локальное изменение направления тока крови (Rushmer, 1981; Johnson, 1982). Связано это, надо полагать, с тем, что кровь к любому участку капиллярного русла поступает из разных артериолярных сосудов. И постоянно возникающие в них в связи с вазомоцией перепады давления могут изменять направление тока крови то в одной, то в другой группе капилляров.
Такой принцип формирования капиллярных сетей должен быть признан весьма целесообразным, так как приток крови в капиллярное русло из многих источников обеспечивает стабильность кровотока в обменном звене системы гемомикроциркуляции независимо от перепадов давления в артериолах и прекапиллярах.
Физиологи различают функционирующие капилляры, которые заполнены цельной кровью, плазматические капилляры, содержащие только плазму, и закрытые (нефункционирующие) капилляры (Г.И.Мчедлишвили, 1989). Плазматические капилляры представляют собой явление функциональное, отражающее динамику распределения в капиллярном русле эритроцитов и плазмы. Плазматические капилляры обычно превращаются в функционирующие, когда их просвет вновь заполняется цельной кровью. Не исключается также возможность перехода плазматических капилляров в закрытые, т.е. нефункционирующие, коль скоро они временно выключаются из транскапиллярного обмена.
Основная часть кровеносных капилляров модулей микроциркуляции включена в конструкцию их капиллярной сети, связанной на входе в капиллярное русло с прекапиллярами, а на выходе из него с посткапиллярами. Но наряду с истинными (образующими сети) капиллярами, в гемомикроциркуляторном ложе имеются и так называемые магистральные капилляры, которые соединяют артериолы и венулы напрямую ( Г.И.Мчедлишвили, 1989; Folkow, Neil, 1976; Саго, Pedley, Schroter, Seed, 1981).
Микроциркуляторное русло кожи при поражении периферического сосудистого русла конечностей
Резюме В обзоре рассматриваются структурные и гемодинамические аспекты нарушений микроциркуляторного кровотока в коже нижних конечностей при поражении артериального и венозного сосудистого русла, и патогенетические принципы медикаментозной коррекции развивающихся метаболических нарушений. Ключевые слова: микроциркуляция, артериоло-венулярное шунтирование, транскапиллярный обмен, микрососудистый эндотелий.
Введение
Основной функцией микроциркуляторного русла (МЦР) является обеспечение тканевого гомеостаза на оптимальном уровне независимо от действия различных внешних и внутренних факторов. Транспорт необходимых для нормальной жизнедеятельности организма веществ из крови в интерстициальное пространство зависит от взаимно перекрывающегося влияния четырех групп факторов: 1) градиента концентрации транспортируемого вещества (кровь-ткань); 2) характера вещества (конфигурация молекулы, молекулярный вес); 3) состояния эндотелия обменных микрососудов; 4) гемодинамического фактора 1.
Есть движение – есть обмен, нет обмена – движение не нужно, поэтому ключевым механизмом в обмене веществ является гемодинамический фактор, который на уровне МЦР непосредственно определяет параметры фильтрационно-реабсорбционного механизма обмена. Процессы фильтрации и реабсорбции через стенку капилляров описываются уравнением Старлинга, которое было сформулировано еще в 1896 году, и зависят от нескольких переменных, основными среди которых являются параметры гидростатического и коллоидно-осмотического давления крови. Первые результаты прямого измерения давления непосредственно в капиллярах кожи человека, выполненные еще в конце 20-х годов ХХ столетия E.M.Landis показали, что давление в артериальном отделе капилляра составляет в среднем 32 мм рт.ст., а в венозном – 12 мм рт.ст. [4]. Коллоидно-осмотическое давление цельной крови, в некотором смысле величина постоянная, и составляет порядка 25-28мм рт.ст. Эффективность фильтрационно-реабсорбционного механизма обмена, обусловленного смещением точки равновесия между процессами фильтрации и реабсорбции в ту или иную сторону, определяется исключительно параметрами кровотока в артериолярном и венулярном отделах МЦР [5,6].
Кожа является наиболее доступным и удобным объектом для неинвазивного исследования микроциркуляции у человека. Бурное развитие современных технологий привело к появлению целого ряда новых и перспективных методов для неинвазивной оценки микроциркуляторного кровотока у человека – лазерная допплеровская флоуметрия (ЛДФ), компьютерная капилляроскопия (ККС), высокочастотная ультразвуковая допплерография и другие. И не смотря на то, что микрососуды кожи не подвержены барорефлекторной регуляции, накопленные данные по ЛДФ и ККС позволяют говорить о том, что МЦР кожи может отражать состояние микроциркуляторных процессов в других органах и системах 9.
МЦР, являясь противоположным сердцу «полюсом» сердечно-сосудистой системы, анатомически находится между артериальной и венозной системами, и поэтому самым непосредственным образом зависит от функционального состояния последних. В связи с этим, особый интерес представляет исследование микроциркуляторного кровотока в коже нижних конечностей, которые подвержены поражению как артериального (система притока), так и венозного (система оттока) сосудистого русла.
Патология артериального русла нижних конечностей
Причины поражения артериального русла могут быть весьма разнообразны, но, не смотря на природу этиологического фактора, основной мишенью является сосудистый эндотелий. Уже в дебюте атеросклеротического поражения сосудистого русла отмечается дисбаланс продукции эндотелием сосудорасширяющих и сосудосуживающих веществ [11,12]. Не смотря на это, в начальных стадиях окклюзионно-стенотического поражения артерий нижних конечностей давление в капиллярах кожи остается на нормальном уровне [13], что, вероятнее всего, объясняется компенсаторным повышением вазомоторной активности артериолярных микрососудов кожи по данным ЛДФ [14]. Однако, не смотря на компенсацию гемодинамических параметров микрокровотока, уже на самых ранних стадиях заболевания отмечается повышенная проницаемость капилляров [15], что свидетельствует о вовлечении в патологический процесс всех без исключения отделов сосудистого русла с нарушением трофики не только тканей, но и самой сосудистой стенки артерий. Нарушения в системе vasa-vasorum, которая по своим морфо-функциональным характеристикам является типичным представителем МЦР, рассматриваются в качестве одной из возможных причин прогрессирования атеросклеротического поражения магистральных сосудов [16,17]. Проведенные А.С.Barger с соавторами (1984) исследования показали, что существует выраженная корреляция между нарушениями в системе vasa-vasorum и прогрессированием атеросклероза в коронарных артериях [18].
На начальных стадиях окклюзионно-стенотического поражения артерий регуляторные механизмы микрокровотока способны поддерживать капиллярную гемодинамику на оптимальном для транскапиллярного обмена уровне только в условиях покоя, а при выполнении различных функциональных тестов отмечаются снижение уровня постокклюзионной реактивной гиперемии с удлинением времени ее развития 21, снижение прироста перфузии при тепловой пробе [21], снижение как эндотелий зависимой (ацетилхолин), так и эндотелий независимой (нитропруссид натрия) дилатации микрососудов 24.
По мере прогрессирования патологии с развитием хронической ишемии нижних конечностей (ХИНК) нарушения на уровне МЦР усугубляются, что во многом обусловлено снижением венуло-артериолярной констрикторной реакции 26, которая в норме носит защитный характер, ограничивая артериальный приток при повышении венозного давления, что предохраняет капилляры от чрезмерного повышения давления. Снижение венуло-артериолярной констрикторной реакции на фоне нарастающих нарушений проницаемости эндотелия капилляров способствуют развитию тканевого отека [15], который не только приводит к грубым метаболическим нарушениям за счет существенного увеличения расстояния диффузии для питательных веществ и продуктов тканевого обмена, но и способствует нарушению оттока крови от капилляров за счет экстравазальной компрессии тонкостенных венулярных микрососудов. Повышение венулярного давления приводит к дальнейшему росту капиллярного давления и усугублению отека. Патологический круг замыкает развитие феномена шунтирования крови по артериоло-венулярным анастомозам (АВА), минуя капиллярное русло, что еще больше усугубляет тканевую ишемию.
В отличие от пациентов с ХИНК атеросклеротического генеза, у которых артериоло-венулярное шунтирование кровотока, как правило, развивается на поздних стадиях заболевания, у пациентов с диабетической ангиопатией данный феномен проявляется на самых ранних стадиях заболевания. Основным патогенетическим механизмом при развитии диабетической ангиопатии является поражение эндотелия капилляров с утолщением базальной мембраны, повышенной пролиферацией эндотелиоцитов и увеличением проницаемости капиллярной стенки 28. Помимо поражения непосредственно эндотелия капилляров, в патологический процесс вовлекаются и приносящие артериолы, что характеризуется разрыхлением и деформацией эндотелия с утолщением стенок сосудов. Совокупность поражения сосудов МЦР приводит к нарушениям в системе vasa-nervorum, приводя к ишемии нервных стволов, что на фоне метаболических нарушений, обусловленных основным заболеванием, приводит к развитию повреждения соматической и вегетативной нервной системы. Периферическая «аутосимпатэктомия» приводит к нарушению регуляции просвета не только артериолярных и венулярных микрососудов, но и к раскрытию АВА, величина просвета которых регулируется исключительно симпатической нервной системой 31. В результате «зияния» АВА кровь сбрасывается в венулярное русло, минуя обменное звено – капилляры.
Патология венозного русла нижних конечностей
Несколько иной механизм нарушения микроциркуляторных процессов при хронической венозной недостаточности (ХВН). Ведущим патогенетическим механизмом нарушений микроциркуляции при ХВН является флебогипертензия, что приводит к росту посткапиллярного сопротивления и увеличения капиллярного давления. При повышении давления в капиллярах выше 50 мм рт.ст. наблюдается выход из капилляров в интерстициальное пространство крупномолекулярных веществ, которые обладают высоким коллоидно-осмотическим потенциалом [34]. У пациентов с ХВН наличие повышенной проницаемости капилляров отмечается уже в ранних стадиях заболевания, когда характерные морфологические изменения капилляров (расширение, штопорообразная извитость) еще не выражены [35,36].
При дальнейшем прогрессировании венозной недостаточности происходит истощение компенсаторных механизмов, развиваются грубые нарушения структуры и проницаемости капилляров с нарастанием тканевого отека, уменьшается количество функционирующих капилляров и снижается напряжение кислорода в коже [36,37]. Все это в итоге приводит к развитию трофических нарушений. В области трофических расстройств отмечается выраженное снижение напряжения кислорода, но на этом фоне, по данным ЛДФ, отмечается увеличение уровня перфузии в 3-5 раз по сравнению с группой контроля [38]. Одни авторы полагают, что увеличение уровня перфузии можно объясняется венулярной гиперемией на фоне застойных явлений [38], когда количество эритроцитов, отражающих лазерное излучение, очень большое. Другие авторы считают, что данный феномен обусловлен наличием шунтирования кровотока по АВА, что также может давать увеличение сигнала ЛДФ [39]. До настоящего времени, вопрос о том, является ли раскрытие АВА пусковым механизмом в развитии ХВН или шунтирование кровотока развивается вторично для выравнивания давления между приносящей и дренирующей частями капилляра, остается открытым. Но совершенно не вызывает сомнения тот факт, что наличие артериоло-венулярных шунтов, в конечном итоге, приводит к нарушению транскапиллярного обмена, усугублению микроциркуляториых расстройств с развитием трофических нарушений при ХВН нижних конечностей.
Заключение
В данном кратком обзоре мы не ставили перед собой задачу осветить все нарушения, возникающие на уровне МЦР кожи при заболеваниях сосудистого русла конечностей, хотя совершенно очевидно, что они сопровождаются целым каскадом изменений реологических и гематокоагуляционных свойств крови, тем более что кровоток на уровне МЦР характеризуется преобладанием вязких сил над кинетическими. Основной акцент в данной работе был сделан на развивающихся нарушениях микрогемодинамики.
Нарушения микроциркуляции в системе vasa-vasorum при поражении артериальных сосудов сегодня уже можно считать доказанным фактом [17,18], а вот работ, касающихся нарушений питания стенки венозных сосудов, в доступной литературе, мы не встретили. Особенностью системы vasa-vasorum артериальных сосудов является трофическое обеспечение только адвентициального слоя и наружного слоя медии, а интима и внутренние слои медии питательные вещества получают непосредственно из просвета сосудов. В венозных сосудах система vasa-vasorum обеспечивается питание всех трех оболочек [40], т.к. наличие питательных веществ в венозной крови природой не предусмотрено. Учитывая данные структурные особенности строения венозной стенки, вполне логично предполагать, что нарушения в системе vasa-vasorum для венозных сосудов может являться более критичным фактором, чем для артериальных. Нарушения в системе vasa-nervorum при сахарном диабете существенно усугубляет как гемодинамические, так и трофические нарушения в коже нижних конечностей, являясь одним из основных патогенетических механизмов такого тяжелого осложнения патологии как «диабетическая стопа».
МЦР, благодаря большому количеству различных регуляторных механизмов, обладает большим «запасом прочности» и на протяжении длительного времени компенсирует развивающиеся нарушения гемодинамики, поддерживая трофическое обеспечение кожи на достаточном уровне. Но при дальнейшем прогрессировании патологии, компенсаторные механизмы системы микроциркуляции истощаются, а развивающиеся трофические нарушения кожи выходят на первый план, что требует активного и чаще всего хирургического лечения. Но самой эффективной операцией является та, которой удалось избежать, поэтому вопрос о медикаментозной коррекции развивающихся нарушений является очень важным.
Одним из медикаментозных препаратов, который позволяет компенсировать нарушения микроциркуляции при заболеваниях сосудистого русла нижних конечностей различной этиологии, является Актовегин – препарат, который более чем за полувековую историю применения, доказал свою высокую метаболическую эффективность [41,42]. Применение Актовегина способствует развитию коллатерального кровотока и улучшению трофического обеспечения тканей при хронической ишемии нижних конечностей [43,44], при трофических нарушениях венозной этиологии [45], а также сосудистых и нейропатических осложнениях сахарного диабета [46].
Клиническая эффективность Актовегина обусловлена его выраженным эндотелиопротекторным действием именно на уровне микрососудистого русла, что продемонстрировано на здоровых добровольцах по данным ЛДФ и ККС. Через 2 часа после окончания внутривенной инфузии Актовегина отмечается существенное увеличение вазомоторной активности прекапиллярных артериол, увеличение скорости капиллярного кровотока, уменьшение элементов артериоло-венулярного шунтирования и снижение степени гидратации (отека) интерстициального пространства [47,48]. Выраженное увеличение вазомоций в диапазоне эндотелиального ритма на фоне Актовегина, вероятнее всего, обусловлено двумя факторами. К первому можно отнести увеличение вазомоторной активности прекапиллярных артериол за счет повышенной выработки эндотелием оксида азота [48], а ко второму – увеличение непосредственно обменной функции эндотелия, проявляющееся в увеличении поступления кислорода в ткани, что наглядно продемонстрировано на взаимосвязи эндотелиальных вазомоций и обмена кислорода [49].
Полученные на здоровых добровольцах результаты подтверждают положение о том, что эффективность обменных процессов зависит от сочетанного действия нескольких факторов, ведущим из которых является состояние эндотелия микрососудов, который и должен быть основной мишенью для медикаментозного воздействия как с лечебной, так и с профилактической целью.