классические алгоритмы машинного обучения

Must-have алгоритмы машинного обучения

Этот пост — краткий обзор общих алгоритмов машинного обучения. К каждому прилагается краткое описание, гайды и полезные ссылки.

Метод главных компонент (PCA)/SVD

Это один из основных алгоритмов машинного обучения. Позволяет уменьшить размерность данных, потеряв наименьшее количество информации. Применяется во многих областях, таких как распознавание объектов, компьютерное зрение, сжатие данных и т. п. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных или к сингулярному разложению матрицы данных.

классические алгоритмы машинного обучения. Смотреть фото классические алгоритмы машинного обучения. Смотреть картинку классические алгоритмы машинного обучения. Картинка про классические алгоритмы машинного обучения. Фото классические алгоритмы машинного обучения

SVD — это способ вычисления упорядоченных компонентов.

Метод наименьших квадратов

Метод наименьших квадратов — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, а также для аппроксимации точечных значений некоторой функции.

классические алгоритмы машинного обучения. Смотреть фото классические алгоритмы машинного обучения. Смотреть картинку классические алгоритмы машинного обучения. Картинка про классические алгоритмы машинного обучения. Фото классические алгоритмы машинного обучения

Используйте этот алгоритм, чтобы соответствовать простым кривым/регрессии.

Ограниченная линейная регрессия

Метод наименьших квадратов может смутить выбросами, ложными полями и т. д. Нужны ограничения, чтобы уменьшить дисперсию линии, которую мы помещаем в набор данных. Правильное решение состоит в том, чтобы соответствовать модели линейной регрессии, которая гарантирует, что веса не будут вести себя “плохо”. Модели могут иметь норму L1 (LASSO) или L2 (Ridge Regression) или обе (elastic regression).

классические алгоритмы машинного обучения. Смотреть фото классические алгоритмы машинного обучения. Смотреть картинку классические алгоритмы машинного обучения. Картинка про классические алгоритмы машинного обучения. Фото классические алгоритмы машинного обучения

Используйте этот алгоритм для соответствия линиям регрессии с ограничениями, избегая переопределения.

Метод k-средних

Всеми любимый неконтролируемый алгоритм кластеризации. Учитывая набор данных в виде векторов, мы можем создавать кластеры точек на основе расстояний между ними. Это один из алгоритмов машинного обучения, который последовательно перемещает центры кластеров, а затем группирует точки с каждым центром кластера. Входные данные – количество кластеров, которые должны быть созданы, и количество итераций.

классические алгоритмы машинного обучения. Смотреть фото классические алгоритмы машинного обучения. Смотреть картинку классические алгоритмы машинного обучения. Картинка про классические алгоритмы машинного обучения. Фото классические алгоритмы машинного обучения

Логистическая регрессия

Логистическая регрессия ограничена линейной регрессией с нелинейностью (в основном используется сигмоидальная функция или tanh) после применения весов, следовательно, ограничение выходов приближено к + / — классам (что равно 1 и 0 в случае сигмоида). Функции кросс-энтропийной потери оптимизированы с использованием метода градиентного спуска.

Примечание для начинающих: логистическая регрессия используется для классификации, а не регрессии. В целом, она схожа с однослойной нейронной сетью. Обучается с использованием методов оптимизации, таких как градиентный спуск или L-BFGS. NLP-разработчики часто используют её, называя “классификацией методом максимальной энтропии”.

классические алгоритмы машинного обучения. Смотреть фото классические алгоритмы машинного обучения. Смотреть картинку классические алгоритмы машинного обучения. Картинка про классические алгоритмы машинного обучения. Фото классические алгоритмы машинного обучения

Используйте LR для обучения простых, но очень “крепких” классификаторов.

SVM (Метод опорных векторов)

SVM – линейная модель, такая как линейная/логистическая регрессия. Разница в том, что она имеет margin-based функцию потерь. Вы можете оптимизировать функцию потерь, используя методы оптимизации, например, L-BFGS или SGD.

классические алгоритмы машинного обучения. Смотреть фото классические алгоритмы машинного обучения. Смотреть картинку классические алгоритмы машинного обучения. Картинка про классические алгоритмы машинного обучения. Фото классические алгоритмы машинного обучения

Одна уникальная вещь, которую могут выполнять SVM – это изучение классификаторов классов.

SVM может использоваться для обучения классификаторов (даже регрессоров).

Нейронные сети прямого распространения

В основном, это многоуровневые классификаторы логистической регрессии. Многие слои весов разделены нелинейностями (sigmoid, tanh, relu + softmax и cool new selu). Также они называются многослойными перцептронами. FFNN могут быть использованы для классификации и “обучения без учителя” в качестве автоэнкодеров.

классические алгоритмы машинного обучения. Смотреть фото классические алгоритмы машинного обучения. Смотреть картинку классические алгоритмы машинного обучения. Картинка про классические алгоритмы машинного обучения. Фото классические алгоритмы машинного обучения

FFNN можно использовать для обучения классификатора или извлечения функций в качестве автоэнкодеров.

Свёрточные нейронные сети

Практически все современные достижения в области машинного обучения были достигнуты с помощью свёрточных нейронных сетей. Они используются для классификации изображений, обнаружения объектов или даже сегментации изображений. Изобретенные Яном Лекуном в начале 90-х годов, сети имеют сверточные слои, которые действуют как иерархические экстракторы объектов. Вы можете использовать их для работы с текстом (и даже для работы с графикой).

классические алгоритмы машинного обучения. Смотреть фото классические алгоритмы машинного обучения. Смотреть картинку классические алгоритмы машинного обучения. Картинка про классические алгоритмы машинного обучения. Фото классические алгоритмы машинного обучения

Рекуррентные нейронные сети (RNNs)

RNNs моделируют последовательности, применяя один и тот же набор весов рекурсивно к состоянию агрегатора в момент времени t и вход в момент времени t. Чистые RNN редко используются сейчас, но его аналоги, например, LSTM и GRU являются самыми современными в большинстве задач моделирования последовательности. LSTM, который используется вместо простого плотного слоя в чистой RNN.

классические алгоритмы машинного обучения. Смотреть фото классические алгоритмы машинного обучения. Смотреть картинку классические алгоритмы машинного обучения. Картинка про классические алгоритмы машинного обучения. Фото классические алгоритмы машинного обучения

Используйте RNN для любой задачи классификации текста, машинного перевода, моделирования языка.

Условные случайные поля (CRFs)

Они используются для моделирования последовательности, как RNN, и могут использоваться в сочетании с RNN. Они также могут быть использованы в других задачах структурированных прогнозирования, например, в сегментации изображения. CRF моделирует каждый элемент последовательности (допустим, предложение), таким образом, что соседи влияют на метку компонента в последовательности, а не на все метки, независимые друг от друга.

Используйте CRF для связки последовательностей (в тексте, изображении, временном ряду, ДНК и т. д.).

Деревья принятия решений и случайные леса

Один из самых распространённых алгоритмов машинного обучения. Используется в статистике и анализе данных для прогнозных моделей. Структура представляет собой “листья” и “ветки”. На “ветках” дерева решения записаны атрибуты, от которых зависит целевая функция, в “листьях” записаны значения целевой функции, а в остальных узлах – атрибуты, по которым различаются случаи.

Чтобы классифицировать новый случай, надо спуститься по дереву до листа и выдать соответствующее значение. Цель состоит в том, чтобы создать модель, которая предсказывает значение целевой переменной на основе нескольких входных переменных.

Источник

Гид: алгоритмы машинного обучения и их типы

Каковы типы алгоритмов машинного обучения и когда их использовать

Автор: Катрина Уэйкфилд (Katrina Wakefield), маркетинг, SAS Великобритания

Термины «Машинное обучение» и «Искусственный интеллект» часто путают между собой. На самом деле, машинное обучение входит в область искусственного интеллекта. Ещё машинное обучение порой путают с прогнозной аналитикой (или предсказательным моделированием). И опять, машинное обучение может использоваться для предсказательного моделирования, но это всего лишь один из видов предиктивной аналитики, и его применение шире, чем предсказательное моделирование.

Термин «машинное обучение» ввел американский компьютерный ученый Артур Самуэль в 1959 году как «способность компьютера учиться, не будучи явным образом запрограммированным».

В своём самом простом виде машинное обучение использует запрограммированные алгоритмы, которые получают и анализируют входные данные, а затем прогнозируют выходные значения из допустимого диапазона. По мере поступления новых данных эти алгоритмы обучаются и оптимизируют свою деятельность, повышая производительность и со временем развивая «интеллект».

Существуют 4 типа алгоритмов машинного обучения: обучение с учителем, обучение с частичным привлечением учителя, обучение без учителя и обучение с подкреплением

Какой алгоритм машинного обучения следует использовать?

Эта памятка поможет из множества алгоритмов машинного обучения выбрать подходящий для ваших конкретных задач алгоритм, а статья в целом продемонстрирует, как пошагово пользоваться памяткой.

Обучение с учителем

При обучении с учителем машина обучается на примерах. Оператор обеспечивает алгоритм машинного обучения набором известных данных, который содержит необходимые входные и выходные значения. Алгоритм должен установить, как получаются по данным входам данные выходы. Сам оператор знает решение поставленной задачи; алгоритм выявляет закономерности в данных, учится на основе наблюдений и делает прогнозы. Эти прогнозы затем корректируются оператором. Процесс продолжается до тех пор, пока алгоритм не достигнет высокого уровня точности/производительности.

К категории обучения с учителем относятся классификация, регрессия и прогнозирование.

Обучение с частичным привлечением учителя

Обучение с частичным привлечением учителя похоже на обучение с учителем, однако использует как размеченные, так и неразмеченные данные. Размеченные данные – это, по сути, наборы единиц информации с приписанными им метками (тегами). В неразмеченных данных таких меток нет. Комбинируя методы обучения, алгоритмы могут обучаться размечать неразмеченные данные.

Обучение без учителя

В этом случае алгоритм машинного обучения изучает данные с целью выявления закономерностей (паттернов). Не существует справочника с ответами или оператора, который мог бы обучить машину. Напротив, программа сама определяет корреляции и связи на основе анализа доступных данных. При обучении без учителя алгоритму машинного обучения позволено самостоятельно интерпретировать большие наборы данных и делать на их основе выводы. Алгоритм пытается каким-либо образом упорядочить данные и описать их структуру. Это может выглядеть как группировка данных в кластеры или это такое упорядочивание данных, при котором они начинают выглядеть систематизировано.

По мере поступления данных для анализа растёт способность алгоритма принимать решения на основе этих данных, а также точность этих решений.

Методы обучения без учителя включают в себя:

Обучение с подкреплением

Фокус обучения с подкреплением делается на регламентированные процессы обучения, при которых алгоритм машинного обучения снабжен набором действий, параметров и конечных значений. Определив правила, алгоритм машинного обучения пытается изучить различные варианты и возможности, отслеживая и оценивая каждый раз результат, чтобы определить, какой из вариантов является оптимальным. Подкрепляемое обучение – это метод проб и ошибок для машины. Она учится на прошлом опыте и меняет свой подход, реагируя на новую ситуацию, пытаясь достичь наилучшего возможного результата.

Источник

Введение в машинное обучение

1.1 Введение

Благодаря машинному обучению программист не обязан писать инструкции, учитывающие все возможные проблемы и содержащие все решения. Вместо этого в компьютер (или отдельную программу) закладывают алгоритм самостоятельного нахождения решений путём комплексного использования статистических данных, из которых выводятся закономерности и на основе которых делаются прогнозы.

Технология машинного обучения на основе анализа данных берёт начало в 1950 году, когда начали разрабатывать первые программы для игры в шашки. За прошедшие десятилетий общий принцип не изменился. Зато благодаря взрывному росту вычислительных мощностей компьютеров многократно усложнились закономерности и прогнозы, создаваемые ими, и расширился круг проблем и задач, решаемых с использованием машинного обучения.

Чтобы запустить процесс машинного обучение, для начала необходимо загрузить в компьютер Датасет(некоторое количество исходных данных), на которых алгоритм будет учиться обрабатывать запросы. Например, могут быть фотографии собак и котов, на которых уже есть метки, обозначающие к кому они относятся. После процесса обучения, программа уже сама сможет распознавать собак и котов на новых изображениях без содержания меток. Процесс обучения продолжается и после выданных прогнозов, чем больше данных мы проанализировали программой, тем более точно она распознает нужные изображения.

Благодаря машинному обучению компьютеры учатся распознавать на фотографиях и рисунках не только лица, но и пейзажи, предметы, текст и цифры. Что касается текста, то и здесь не обойтись без машинного обучения: функция проверки грамматики сейчас присутствует в любом текстовом редакторе и даже в телефонах. Причем учитывается не только написание слов, но и контекст, оттенки смысла и другие тонкие лингвистические аспекты. Более того, уже существует программное обеспечение, способное без участия человека писать новостные статьи (на тему экономики и, к примеру, спорта).

1.2 Типы задач машинного обучения

Все задачи, решаемые с помощью ML, относятся к одной из следующих категорий.

1)Задача регрессии – прогноз на основе выборки объектов с различными признаками. На выходе должно получиться вещественное число (2, 35, 76.454 и др.), к примеру цена квартиры, стоимость ценной бумаги по прошествии полугода, ожидаемый доход магазина на следующий месяц, качество вина при слепом тестировании.

2)Задача классификации – получение категориального ответа на основе набора признаков. Имеет конечное количество ответов (как правило, в формате «да» или «нет»): есть ли на фотографии кот, является ли изображение человеческим лицом, болен ли пациент раком.

3)Задача кластеризации – распределение данных на группы: разделение всех клиентов мобильного оператора по уровню платёжеспособности, отнесение космических объектов к той или иной категории (планета, звёзда, чёрная дыра и т. п.).

4)Задача уменьшения размерности – сведение большого числа признаков к меньшему (обычно 2–3) для удобства их последующей визуализации (например, сжатие данных).

5)Задача выявления аномалий – отделение аномалий от стандартных случаев. На первый взгляд она совпадает с задачей классификации, но есть одно существенное отличие: аномалии – явление редкое, и обучающих примеров, на которых можно натаскать машинно обучающуюся модель на выявление таких объектов, либо исчезающе мало, либо просто нет, поэтому методы классификации здесь не работают. На практике такой задачей является, например, выявление мошеннических действий с банковскими картами.

1.3 Основные виды машинного обучения

Основная масса задач, решаемых при помощи методов машинного обучения, относится к двум разным видам: обучение с учителем (supervised learning) либо без него (unsupervised learning). Однако этим учителем вовсе не обязательно является сам программист, который стоит над компьютером и контролирует каждое действие в программе. «Учитель» в терминах машинного обучения – это само вмешательство человека в процесс обработки информации. В обоих видах обучения машине предоставляются исходные данные, которые ей предстоит проанализировать и найти закономерности. Различие лишь в том, что при обучении с учителем есть ряд гипотез, которые необходимо опровергнуть или подтвердить. Эту разницу легко понять на примерах.

Машинное обучение с учителем

Предположим, в нашем распоряжении оказались сведения о десяти тысячах московских квартир: площадь, этаж, район, наличие или отсутствие парковки у дома, расстояние от метро, цена квартиры и т. п. Нам необходимо создать модель, предсказывающую рыночную стоимость квартиры по её параметрам. Это идеальный пример машинного обучения с учителем: у нас есть исходные данные (количество квартир и их свойства, которые называются признаками) и готовый ответ по каждой из квартир – её стоимость. Программе предстоит решить задачу регрессии.

Ещё пример из практики: подтвердить или опровергнуть наличие рака у пациента, зная все его медицинские показатели. Выяснить, является ли входящее письмо спамом, проанализировав его текст. Это всё задачи на классификацию.

Машинное обучение без учителя

В случае обучения без учителя, когда готовых «правильных ответов» системе не предоставлено, всё обстоит ещё интереснее. Например, у нас есть информация о весе и росте какого-то количества людей, и эти данные нужно распределить по трём группам, для каждой из которых предстоит пошить рубашки подходящих размеров. Это задача кластеризации. В этом случае предстоит разделить все данные на 3 кластера (но, как правило, такого строгого и единственно возможного деления нет).

Если взять другую ситуацию, когда каждый из объектов в выборке обладает сотней различных признаков, то основной трудностью будет графическое отображение такой выборки. Поэтому количество признаков уменьшают до двух или трёх, и становится возможным визуализировать их на плоскости или в 3D. Это – задача уменьшения размерности.

1.4 Основные алгоритмы моделей машинного обучения

1. Дерево принятия решений

Это метод поддержки принятия решений, основанный на использовании древовидного графа: модели принятия решений, которая учитывает их потенциальные последствия (с расчётом вероятности наступления того или иного события), эффективность, ресурсозатратность.

Для бизнес-процессов это дерево складывается из минимального числа вопросов, предполагающих однозначный ответ — «да» или «нет». Последовательно дав ответы на все эти вопросы, мы приходим к правильному выбору. Методологические преимущества дерева принятия решений – в том, что оно структурирует и систематизирует проблему, а итоговое решение принимается на основе логических выводов.

2. Наивная байесовская классификация

Наивные байесовские классификаторы относятся к семейству простых вероятностных классификаторов и берут начало из теоремы Байеса, которая применительно к данному случаю рассматривает функции как независимые (это называется строгим, или наивным, предположением). На практике используется в следующих областях машинного обучения:

Всем, кто хоть немного изучал статистику, знакомо понятие линейной регрессии. К вариантам её реализации относятся и наименьшие квадраты. Обычно с помощью линейной регрессии решают задачи по подгонке прямой, которая проходит через множество точек. Вот как это делается с помощью метода наименьших квадратов: провести прямую, измерить расстояние от неё до каждой из точек (точки и линию соединяют вертикальными отрезками), получившуюся сумму перенести наверх. В результате та кривая, в которой сумма расстояний будет наименьшей, и есть искомая (эта линия пройдёт через точки с нормально распределённым отклонением от истинного значения).

Линейная функция обычно используется при подборе данных для машинного обучения, а метод наименьших квадратов – для сведения к минимуму погрешностей путем создания метрики ошибок.

4. Логистическая регрессия

Логистическая регрессия – это способ определения зависимости между переменными, одна из которых категориально зависима, а другие независимы. Для этого применяется логистическая функция (аккумулятивное логистическое распределение). Практическое значение логистической регрессии заключается в том, что она является мощным статистическим методом предсказания событий, который включает в себя одну или несколько независимых переменных. Это востребовано в следующих ситуациях:

Это целый набор алгоритмов, необходимых для решения задач на классификацию и регрессионный анализ. Исходя из того что объект, находящийся в N-мерном пространстве, относится к одному из двух классов, метод опорных векторов строит гиперплоскость с мерностью (N – 1), чтобы все объекты оказались в одной из двух групп. На бумаге это можно изобразить так: есть точки двух разных видов, и их можно линейно разделить. Кроме сепарации точек, данный метод генерирует гиперплоскость таким образом, чтобы она была максимально удалена от самой близкой точки каждой группы.

SVM и его модификации помогают решать такие сложные задачи машинного обучения, как сплайсинг ДНК, определение пола человека по фотографии, вывод рекламных баннеров на сайты.

Он базируется на алгоритмах машинного обучения, генерирующих множество классификаторов и разделяющих все объекты из вновь поступающих данных на основе их усреднения или итогов голосования. Изначально метод ансамблей был частным случаем байесовского усреднения, но затем усложнился и оброс дополнительными алгоритмами:

Кластеризация заключается в распределении множества объектов по категориям так, чтобы в каждой категории – кластере – оказались наиболее схожие между собой элементы.

Кластеризировать объекты можно по разным алгоритмам. Чаще всего используют следующие:

8. Метод главных компонент (PCA)

Метод главных компонент, или PCA, представляет собой статистическую операцию по ортогональному преобразованию, которая имеет своей целью перевод наблюдений за переменными, которые могут быть как-то взаимосвязаны между собой, в набор главных компонент – значений, которые линейно не коррелированы.

Практические задачи, в которых применяется PCA, – визуализация и большинство процедур сжатия, упрощения, минимизации данных для того, чтобы облегчить процесс обучения. Однако метод главных компонент не годится для ситуаций, когда исходные данные слабо упорядочены (то есть все компоненты метода характеризуются высокой дисперсией). Так что его применимость определяется тем, насколько хорошо изучена и описана предметная область.

9. Сингулярное разложение

В линейной алгебре сингулярное разложение, или SVD, определяется как разложение прямоугольной матрицы, состоящей из комплексных или вещественных чисел. Так, матрицу M размерностью [m*n] можно разложить таким образом, что M = UΣV, где U и V будут унитарными матрицами, а Σ – диагональной.

Одним из частных случаев сингулярного разложения является метод главных компонент. Самые первые технологии компьютерного зрения разрабатывались на основе SVD и PCA и работали следующим образом: вначале лица (или другие паттерны, которые предстояло найти) представляли в виде суммы базисных компонент, затем уменьшали их размерность, после чего производили их сопоставление с изображениями из выборки. Современные алгоритмы сингулярного разложения в машинном обучении, конечно, значительно сложнее и изощрённее, чем их предшественники, но суть их в целом нем изменилась.

10. Анализ независимых компонент (ICA)

Это один из статистических методов, который выявляет скрытые факторы, оказывающие влияние на случайные величины, сигналы и пр. ICA формирует порождающую модель для баз многофакторных данных. Переменные в модели содержат некоторые скрытые переменные, причем нет никакой информации о правилах их смешивания. Эти скрытые переменные являются независимыми компонентами выборки и считаются негауссовскими сигналами.

В отличие от анализа главных компонент, который связан с данным методом, анализ независимых компонент более эффективен, особенно в тех случаях, когда классические подходы оказываются бессильны. Он обнаруживает скрытые причины явлений и благодаря этому нашёл широкое применение в самых различных областях – от астрономии и медицины до распознавания речи, автоматического тестирования и анализа динамики финансовых показателей.

1.5 Примеры применения в реальной жизни

Пример 1. Диагностика заболеваний

Пациенты в данном случае являются объектами, а признаками – все наблюдающиеся у них симптомы, анамнез, результаты анализов, уже предпринятые лечебные меры (фактически вся история болезни, формализованная и разбитая на отдельные критерии). Некоторые признаки – пол, наличие или отсутствие головной боли, кашля, сыпи и иные – рассматриваются как бинарные. Оценка тяжести состояния (крайне тяжёлое, средней тяжести и др.) является порядковым признаком, а многие другие – количественными: объём лекарственного препарата, уровень гемоглобина в крови, показатели артериального давления и пульса, возраст, вес. Собрав информацию о состоянии пациента, содержащую много таких признаков, можно загрузить её в компьютер и с помощью программы, способной к машинному обучению, решить следующие задачи:

Пример 2. Поиск мест залегания полезных ископаемых

В роли признаков здесь выступают сведения, добытые при помощи геологической разведки: наличие на территории местности каких-либо пород (и это будет признаком бинарного типа), их физические и химические свойства (которые раскладываются на ряд количественных и качественных признаков).

Для обучающей выборки берутся 2 вида прецедентов: районы, где точно присутствуют месторождения полезных ископаемых, и районы с похожими характеристиками, где эти ископаемые не были обнаружены. Но добыча редких полезных ископаемых имеет свою специфику: во многих случаях количество признаков значительно превышает число объектов, и методы традиционной статистики плохо подходят для таких ситуаций. Поэтому при машинном обучении акцент делается на обнаружение закономерностей в уже собранном массиве данных. Для этого определяются небольшие и наиболее информативные совокупности признаков, которые максимально показательны для ответа на вопрос исследования – есть в указанной местности то или иное ископаемое или нет. Можно провести аналогию с медициной: у месторождений тоже можно выявить свои синдромы. Ценность применения машинного обучения в этой области заключается в том, что полученные результаты не только носят практический характер, но и представляют серьёзный научный интерес для геологов и геофизиков.

Пример 3. Оценка надёжности и платёжеспособности кандидатов на получение кредитов

С этой задачей ежедневно сталкиваются все банки, занимающиеся выдачей кредитов. Необходимость в автоматизации этого процесса назрела давно, ещё в 1960–1970-е годы, когда в США и других странах начался бум кредитных карт.

Лица, запрашивающие у банка заём, – это объекты, а вот признаки будут отличаться в зависимости от того, физическое это лицо или юридическое. Признаковое описание частного лица, претендующего на кредит, формируется на основе данных анкеты, которую оно заполняет. Затем анкета дополняется некоторыми другими сведениями о потенциальном клиенте, которые банк получает по своим каналам. Часть из них относятся к бинарным признакам (пол, наличие телефонного номера), другие — к порядковым (образование, должность), большинство же являются количественными (величина займа, общая сумма задолженностей по другим банкам, возраст, количество членов семьи, доход, трудовой стаж) или номинальными (имя, название фирмы-работодателя, профессия, адрес).

Для машинного обучения составляется выборка, в которую входят кредитополучатели, чья кредитная история известна. Все заёмщики делятся на классы, в простейшем случае их 2 – «хорошие» заёмщики и «плохие», и положительное решение о выдаче кредита принимается только в пользу «хороших».

Более сложный алгоритм машинного обучения, называемый кредитным скорингом, предусматривает начисление каждому заёмщику условных баллов за каждый признак, и решение о предоставлении кредита будет зависеть от суммы набранных баллов. Во время машинного обучения системы кредитного скоринга вначале назначают некоторое количество баллов каждому признаку, а затем определяют условия выдачи займа (срок, процентную ставку и остальные параметры, которые отражаются в кредитном договоре). Но существует также и другой алгоритм обучения системы – на основе прецедентов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *