классификация ферментов история развития учения о ферментах

1 Краткая история развития учения о ферментах

Ферменты, или энзимы, представляют собой высокоспециализированный класс веществ белковой природы, используемый живыми организмами для осуществления с высокой скоростью многих тысяч взаимосвязанных химических ре-

акций, включая синтез, распад и взаимопревращение огромного множества разнообразных химических соединений.

Первые данные, указывающие на то, что в живых клетках содержатся вещества, катализирующие определённые реакции, были получены в 1897г. немецким учёным Э.Бухнером. В 1814г. К.С. Кирхгоф впервые получил препарат фермента (в виде раствора), вызывающего превращение крахмала в более простые сахара.

В 30-х годах XX в. некоторые ферменты были получены в кристаллическом состоянии. Так, в 1926 г. Самнер сообщил о выделении из бобов фермента уреазы, предположительно имеющего белковую природу. Однако отнесение уреазы к белкам сочли вначале нелепым. Последующие исследования Самнера и независимо Нортропа и Стенли привели к выделению ещё нескольких ферментов, и, наконец, в 1935 г. белковая природа ферментов стала общепризнанной. Большое значение этого открытия, в частности, отражено в факте присуждения Нобелевской премии в1946 г. Самнеру, Нортропу и Стенли.

Дальнейшие исследования подтвердили, что по химической природе ферменты являются белками.

2 Общие свойства ферментов и химических катализаторов небелковой природы

1. Ферменты не входят в состав конечных продуктов реакции и не расходуются в процессе катализа, выходя из реакции в неизменном виде, т.е. освобождаясь, могут снова реагировать с новыми молекулами субстрата.

2. Ферменты только ускоряют реакции, протекающие и без них, они не могут возбудить реакции, противоречащие законам термодинамики.

3. Ферменты не смещают положение равновесия, а лишь ускоряют его достижение.

3 Отличительные признаки ферментативного и химического катализа

1. Скорость ферментативного катализа намного выше, чем небиологического. Например, энергия активации реакции разложения перекиси водорода

H 2 O 2 → H 2 O + ½O 2

равна 75,3 кДж/моль, поэтому самопроизвольное разложение протекает настолько медленно, что выделяющийся кислород визуально незаметен. При добавлении неорганического катализатора – железа или платины – энергия активации снижается до 54,1 кДж/моль, реакция ускоряется в тысячи раз и становится заметной по выделению пузырьков кислорода. Фермент катализа, разлагающий перекись водорода, снижает энергию активации более чем в 4 раза и ускоряет реакцию разложения в миллиард раз. Реакция протекает настолько бурно, что раствор от выделяющегося кислорода буквально вскипает. Наконец, одна-единственная молекула фермента может катализировать при обычной температуре превращение от тысячи до миллиона молекул вещества в минуту. Эта скорость катализа недостижима для небиологических катализаторов.

классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах

2. Ферменты обладают высокой специфичностью, направляя превращение вещества в строгое русло.

3.Ферментативные процессы не дают побочных реакций, для них характерен 100 %-ный выход целевого продукта.

4. Ферменты катализируют реакции в мягких условиях (физиологических), т.е. при обычном давлении, небольшой температуре и значениях pH, более близких к нейтральным, однако весьма чувствительна к сдвигам pH среды и изменению температуры.

5. Ферменты регулируемы. То есть они могут изменять свою активность под воздействием ряда факторов, изменяя количественные выходы продуктов. Регуляция ферментативных систем лежит в основе координации всех процессов метаболизма во времени и пространстве, что обеспечивает воспроизведение живой материи и стабилизацию внутриклеточной среды.

6. Скорость ферментативных реакций прямо пропорциональна количеству фермента, поэтому недостаток фермента в организме означает низкую скорость превращения какого-либо соединения, и наоборот, одним из путей приспособления организма является увеличение количества требуемого фермента.

4 Строение ферментов

Как и другие белки, ферменты имеют первичную, вторичную, третичную и четвертичную структуры. Им присущи все физико-химические свойства белков, и лишь одна отличительная особенность у них – это способность катализировать химические реакции.

Все ферменты делятся на две большие группы – однокомпонентные и двухкомпонентные. Однокомпонентные ферменты состоят из одного белка, обладающего каталитическим действием. Двухкомпонентные состоят из белковой части – называемой апоферментом, и небелковой части, называемой кофактором. Оба компонента в отдельности лишены ферментативной активности.

Апофермент и кофактор образуют холофермент, т.е. функционально действенный энзим. Прочность связи между кофактором и апоферментом может быть различной. Если эта связь прочная и постоянная, то такой кофактор называют простетической группой. Если связывание белка и кофактора происходит в момент катализа, то такой кофактор называется коферментом.

Роль кофактора сводится либо к изменению трёхмерной структуры белка, способствующей лучшему связыванию фермента с субстратом, либо к непосредственному участию в реакции в качестве ещё одного субстрата. Соединение в холофермент осуществляется любыми типами связей, кроме ковалентных.

Таблица 1 – Некоторые кофакторы

(протонов и электронов)

Рибофлавин – витамин B 2

классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах

(протонов и электронов)

Активация и перенос

Пиридоксин – витамин B 6

Тиамин – витамин B 1

Как правило, именно коферменты выступают в качестве дополнительных субстратов. Они обычно играют роль промежуточных переносчиков, электронов или химических групп, которые в результате ферментативной реакции переносятся от одного соединения на другое.

Кофакторы термостабильны, тогда как белковая часть фермента денатурирует при нагревании. Кофактор ответственен за каталитическую активность фермента, белковая же часть усиливает каталитическое действие и определяет специфичность фермента. Один и тот же кофактор может функционировать в составе разных ферментов. Например, одна и таже NAD + (никатинамидадениндинуклеотид) является коферментом многих дегидрогеназ (окислительно-восстановитель- ных ферментов), отличие – в апоферментной части (белке).

При изучении взаимодействия фермента и субстрата было обращено внимание на то, что молекула фермента по размеру во много раз больше молекул субстрата. Это дало основание полагать, что субстрат взаимодействует не со всей молекулой фермента, а с каким-то небольшим участком, расположенным на его поверхности. Этот участок называется активным центром. Он находится в углублении поверхности белковой молекулы. У однокомпонентных ферментов активный центр образуется при формировании третичной структуры белка в результате сближения и определённой ориентации аминокислотных остатков, расположенных в различных концах полипептидной цепи. В двухкомпонентных ферментах активный центр представляет собой комплекс кофактора и нескольких примыкающих к нему аминокислотных остатков.

Чаще всего в активном центре содержатся остатки аминокислот гистидина, глутамина, аспарагина, цистеина, треонина. В активном центре фермента условно различают место, к которому прикрепляется субстрат – связующий или субстратный центр и каталитический центр, непосредственно вступающий в химическое взаимодействие с субстратом. Сказанное может быть представлено в следующей общей форме:

Источник

Все о ферментах

Энзимология решает две главные неразрывно связанные между собой проблемы, касающиеся с одной стороны, структурной молекулярной организацией ферментов, с другой – природы химических взаимодействий, лежащих в основе ферментативного катализа. Изучение ферментов имеет огромное значение для любой фундаментальной и прикладной области биологии, а также для многих практических отраслей химической, пищевой, фармацевтической индустрии, занятых приготовлением катализаторов, антибиотиков, витаминов и многих других биологически активных веществ, используемых в медицине и хозяйстве.

Краткая история развития учения о ферментах

Явление брожения и переваривания известно с незапамятных времен. Но первое научное представление относится к первой половине XIX века, в 1814 г. петербургский ученый К.С. Кирхгоф показал, что не только проросшие семена ячменя, но и экстракты из солода способны осахаривать крахмал до мальтозы. Это вещество получило название амилазы.

Ю. Либих и Ф. Велер открыли амигдамин, содержащийся в эфирном масле горького миндаля. Затем были открыты другие ферменты: пепсин, трипсин, которые вызывают гидролиз белков в желудочно-кишечном тракте.

Наибольшее внимание исследователей привлекали процессы окисления в организме. В организме в процессе превращения глюкозы до СО2 и Н2О последовательно участвует около 15 различных ферментов. Биологические катализаторы не вызывают каких-либо побочных реакций.

Современные направления исследования энзимологии.

Химическая природа ферментов

Ферменты имеют белковую природу – это неопровержимые данные.

В 1926 г. Р. Вальштеттер отрицал принадлежность ферментов к белкам или к какому либо известному классу органических веществ. Поводом для сомнений явились опыты, в которых, хотя и были получены ферментативно-активные растворы, но белок не обнаруживался при помощи качественных цветных реакций. Объясняется это тем, что концентрация фермента при высокой удельной активности оказывается ниже пороговой чувствительности химического теста на белок.

О белковой природе ферментов говорит факт потери активности ферментов брожения при кипячении, установленный ещё Л. Пастером. При кипячении наступает необратимая денатурация белка-фермента. Они теряют свои биологические свойства – антигенные, гормональные, каталитические. Под влиянием различных физических и химических факторов происходит денатурация ферментов как и белков.

Строение и классификация ферментов

В зависимости от химической природы ферменты делятся на простые и сложные :

Активный центр фермента – уникальная комбинация аминокислотных остатков, обеспечивающая непосредственно взаимодействие с молекулой субстрата и прямое участие в акте катализа. У сложных ферментов в состав активного центра входит и простатическая группа.

Механизм действия ферментов

Механизм каталитического действия ферментов является слитным. Слитный механизм каталитического действия заключается в том, что переход от исходных веществ к продуктам переходит постепенно через образование активированных комплексов с участием катализатора, которые невозможно выделить в свободном состоянии, но иногда можно зафиксировать с помощью физических методов исследования.

Свойства ферментов

Ферменты обладают свойствами, отличными от неорганических катализаторов. См. табл. 2 «Различия между неорганическими катализаторами и ферментами»

Активность ферментов.

Под активностью ферментов понимают начальную скорость химической реакции, катализируемой ферментами, например в мкмолях превращающегося субстрата в 1 мин или мкмолях образующегося продукта в 1 мин.

В настоящее время используют две единицы ферментативной активности:

a) Стандартная единица U

Единица активности фермента – это такое его количество, которое при определенных условиях катализирует превращение 1 мкмоль субстрата в 1 мин, или если атаке подвергается более, чем одна связь в молекуле субстрата, 1мкэкв в 1 мин.

1 катал – это такая каталитическая активность, которая увеличивает скорость реакции на 1 моль/с в определенной тест-системе.

В обоих случаях оговариваются условия, т.е. температура, рН, концентрация субстрата.

Удельная активность в первых двух случаях выражается соответственно мкмоль/мин*мг или ед. акт/мг. Если ферментативная активность выражается в каталах, удельная активность должна быть представлена в кат/кг.

1мкмоль/мин = 1 ед. акт. = 16,67 мкат.

Факторы, влияющие на активность ферментов.

Т.е. факторы, определяющие скорость реакций, катализируемых ферментами.

Со временем скорость реакции уменьшается. Это может быть объяснено угнетающим действием на фермент продуктов реакции, уменьшение количества субстрата, инактивацией фермента, влиянием скорости обратной реакции, которая может оказаться существенной по мере накопления продуктов реакции. Поэтому, учитывая эти обстоятельства при исследовании скорости химических реакций в тканях, биологических жидкостях, определяют начальную скорость реакции.

Влияние концентрации субстрата

При постоянной концентрации фермента скорость реакции постепенно увеличивается, достигает определенного максимума. Дальнейшее повышение концентрации субстрата практически не влияет на скорость. В этих случаях принято считать, что субстрат находится в избытке, и фермент полностью насыщен.

Скорость любой ферментативной реакции зависит от концентрации фермента. Скорость реакции прямо пропорциональна количеству фермента.

Активирование и ингибирование ферментов

Активаторы повышают активность фермента. Соляная кислота активирует действие пепсина; желчные кислоты – панкреатической липазы. Активатором может быть витамин С. Особенно часто активатором могут являться ионы двухвалентных металлов:

Анионы при физиологических концентрациях оказывают небольшое активирующее действие на ферменты. Исключение составляет пепсин, некоторые оксидоредуктазы, активизируемые анионами, а также амилаза слюны, катализирующая гидролиз крахмала, активность которой повышается при действии ионов хлора Cl-, аденилатциклаза, которая активируется анионами галогенов.

Ингибиторы

Вещества, вызывающие частичное торможение или полное торможение реакции.

Термолабильность.

Термолабильность – это чувствительность к изменению температуры. Однако вследствие белковой природы тепловая денатурация фермента уменьшает эффективную денатурацию фермента.

Обычно в температурном интервале 40 – 50 ºC скорость ферментативных реакций максимальна. Выше 50 ºC скорость снижается, т.к. начинает сказываться денатурация. При температуре 100 ºC почти все ферменты утрачивают свою активность. Оптимальной температурой для действия фермента животного происхождения является tº= 37 – 40 ºC. При 0 ºC оптимальная активность ферментов падает почти до 0, но фермент при этом не разрушается. На Термолабильность оказывает влияние концентрация субстрата, рН-среда и другие факторы.

Зависимость от рН-среды.

Специфичность ферментов.

Местом действия для липазы, катализирующей гидролиз жиров до глицерина и высших карбоновых кислот, является сложно эфирная связь.

Аналогичной групповой специфичностью обладают трипсин, химотрипсин, пептидаза, ферменты, которые гидролизируют α-гликозидные связи в полисахаридах.

Имеются экспериментальные данные о стереохимической специфичности, обусловленных существованием оптически изомерных L- и D-форм или геометрических изомеров химических веществ.

Фумараза действует на фумаровую кислоту. Однако не действует на малеиновую.

Таким образом, благодаря специфичности действия ферменты обеспечивают протекание с высокой скоростью лишь определенных реакций из огромного разнообразия возможных превращений в микропространстве клеток и целостном организме, регулируя тем самым обмен веществ.

Химико-биологическая характеристика фермента амилазы.

Амилазы применяются в пивоваренной, текстильной промышленности, в хлебопекарном производстве. Например, α-амилаза используется в пивоварении для осахаривания содержащегося в солоде крахмала, γ-Амилаза используется для производства глюкозы.

Источник

Краткая история развития учения о ферментах

классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах

классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах

классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах

МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ

УНИВЕРСИТЕТ ПРОДОВОЛЬСТВИЯ

Кафедра химической технологии

КОНСПЕКТ ЛЕКЦИЙ

БИОЛОГИЧЕСКАЯ ХИМИЯ

для студентов специальностей

49 01 01, 49 01 02, 91 01 01

ФЕРМЕНТЫ-ВИТАМИНЫ

Рассмотрен и рекомендован к изданию кафедрой

химической технологии высокомолекулярных соединений

Протокол № __ от ___________ 2005 г.

Рассмотрен и рекомендован к изданию секцией выпускающих кафедр

Протокол № _ от ____________2005 г.

Составитель доцент Макасеева О.Н.

графического материала доцент Баранов О.М.

Рецензент доцент Шуляк Т.Л.

Ó УО «Могилевский государственный университет продовольствия»

Содержание

2 Общие свойства ферментов и химических катализаторов небелковой природы 4

3 Отличительные признаки ферментативного и химического катализа. 4

4 Строение ферментов. 5

5 Механизм действия ферментов. 7

6 Единицы ферментативной активности. 8

7 Специфичность ферментов. 8

8 Термолабильность ферментов. 10

9 Влияние кислотности среды.. 11

10 Концентрация фермента. 12

11 Концентрация субстрата. 13

12 Активаторы и ингибиторы ферментов. 14

13 Аллостерические ферменты.. 16

15 Классификация и номенклатура ферментов. 18

16 Использование ферментных препаратов. 22

17 Иммобилизованные ферменты.. 22

19 Классификация витаминов. 25

20 Жирорастворимые витамины.. 26

20.1 Витамины группы А. 26

20.2 Витамины группы D (кальциферол). 28

20.3 Витамины группы Е. 30

20.4 Витамины группы К. 32

21 Водорастворимые витамины.. 34

21.1 Общая характеристика витаминов группы B. 34

21.1.1 Витамин B1 (тиамин; антиневритный). 34

21.1.2 Витамин B2 (рибофлавин). 36

21.1.3 Витамин B3 (пантотеновая кислота). 38

21.1.4 Витамин B6. 39

21.1.5 Витамин B12. 42

21.2 Витамин РP (ниацин). 44

21.4 Биотин (витамин H). 48

21.5 Витамин P (Цитрин). 49

21.6 Фолиевая кислота. Витамин Bc птероилглутаминовая кислота.. 50

22 Витаминоподобные вещества. 52

22.1 Парааминобензойная кислота.. 52

22.2 Витамин В15. 53

22.5 Антивитамины. 55

Рекомендуемая литература. 56

Краткая история развития учения о ферментах

Ферменты, или энзимы, представляют собой высокоспециализированный класс веществ белковой природы, используемый живыми организмами для осуществления с высокой скоростью многих тысяч взаимосвязанных химических реакций, включая синтез, распад и взаимопревращение огромного множества разнообразных химических соединений.

Первые данные, указывающие на то, что в живых клетках содержатся вещества, катализирующие определённые реакции, были получены в 1897г. немецким учёным Э.Бухнером. В 1814г. К.С. Кирхгоф впервые получил препарат фермента (в виде раствора), вызывающего превращение крахмала в более простые сахара.

В 30-х годах XX в. некоторые ферменты были получены в кристаллическом состоянии. Так, в 1926 г. Самнер сообщил о выделении из бобов фермента уреазы, предположительно имеющего белковую природу. Однако отнесение уреазы к белкам сочли вначале нелепым. Последующие исследования Самнера и независимо Нортропа и Стенли привели к выделению ещё нескольких ферментов, и, наконец, в 1935 г. белковая природа ферментов стала общепризнанной. Большое значение этого открытия, в частности, отражено в факте присуждения Нобелевской премии в1946 г. Самнеру, Нортропу и Стенли.

Дальнейшие исследования подтвердили, что по химической природе ферменты являются белками.

Источник

Реферат на тему «Ферменты»

Ищем педагогов в команду «Инфоурок»

«Белорусский государственный педагогический

университет имени Максима Танка»

ВВЕДЕНИЕ

Изучение химии жизни уже в 1827 г. привело к принятому до сих пор разделению биологических молекул на белки, жиры и углеводы. Автором этой классификации был английский химик и врач Уильям Праут.

Новый толчок развитию биологической химии дали работы по изучению брожения, инициированные Луи Пастером. В 1897 г. Эдуард Бухнер доказал, что ферментация сахара может происходить в присутствии бесклеточного дрожжевого экстракта, и это процесс не столько биологический, сколько химический. На рубеже XIX и XX веков работал немецкий биохимик Э. Фишер. Он сформулировал основные положения пептидной теории строения белков, установил структуру и свойства почти всех входящих в их состав аминокислот. Но лишь в 1926 г. Джеймсу Самнеру удалось получить первый чистый фермент, уреазу, и доказать, что фермент — это белок.

Целью данной работы является описать структуру и свойства ферментов как биологических полимеров, обозначить основные направления использования ферментов.

Задачи данной работы:

-Показать роль ферментов в жизни человека.

-Определить сходства и различия ферментов с небелковыми катализаторами.

Структура работы состоит из 2 глав, 5 рисунков, выводов и списка основной использованной литературы. Общий объем работы составляет 14 страниц.

ФЕРМЕНТЫ, ИХ СТРОЕНИЕ

Ферменты, или энзимы , – это биологические катализаторы, ускоряющие химические реакции. Общее число известных ферментов составляет несколько тысяч. Практически все химические реакции, протекающие в живых организмах, осуществляются при их участии. Ферменты ускоряют химические реакции в 10 8 – 10 20 раз. Они играют решающую роль в важнейших биологических процессах: в обмене веществ, в мышечном сокращении, в обезвреживании чужеродных веществ, попавших в организм, в передаче сигнала, в транспорте веществ, свертывании крови и многих других. Для клетки ферменты абсолютно необходимы, без них клетка, а следовательно, и жизнь, не могли бы существовать.

Слово фермент произошло от латинского fermentum – закваска, энзим в переводе с греческого означает «в дрожжах». Первые сведения о ферментах были получены еще в XIX веке, но только в начале XX века были сформулированы теории действия ферментов, и лишь в 1926 году Джеймс Самнер впервые получил очищенный фермент в кристаллическом виде – уреазу Уреаза катализирует гидролитическое расщепление мочевины:

классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах

Рисунок 1. Гидролитическое расщепление мочевины

Самнер обнаружил, что кристаллы уреазы состоят из белка. В 30-е гг. прошлого столетия Джон Нортон с коллегами получили в кристаллическом виде пищеварительные ферменты трипсин и пепсин, а также установили, что они, как и уреаза, по своей природе являются белками. В результате этих исследований сформировалась точка зрения о белковой природе ферментов, которая многократно впоследствии подтверждалась. И только значительно позже у некоторых РНК была обнаружена способность осуществлять катализ; такие РНК получили название рибозимов, или РНК-ферментов. Рибозимы составляют незначительную часть от всех ферментов, поэтому мы далее будем говорить о ферментах белках.

Сходства и различия ферментов с небелковыми катализаторами

Ферменты имеют ряд общих свойств с химическими небелковыми катализаторами:

а) не расходуются в процессе катализа и не претерпевают необратимых изменений;

b) ускоряют как прямую, так и обратную реакции, не смещая при этом химического равновесия;

c) катализируют только те реакции, которые могут протекать и без них;

d) повышают скорость химической реакции за счет снижения энергии активации (рис. 2) .

Химическая реакция протекает потому, что некоторая доля молекул исходных веществ обладает большей энергией по сравнению с другими молекулами, и этой энергии достаточно для достижения переходного состояния. Ферменты, как и химические катализаторы, снижают энергию активации, взаимодействуя с исходными молекулами, в связи с этим число молекул, способных достичь переходного состояния, возрастает, вследствие этого увеличивается и скорость ферментативной реакции.

классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах

Рисунок 2. Влияние фермента на энергию активации

Ферменты, несмотря на определенное сходство с небелковыми химическими катализаторами, отличаются от них по ряду параметров:

b) ферменты обладают более высокой специфичностью в сравнении с небелковыми катализаторами, они ускоряют более узкий круг химических реакций, например, уже упомянутый фермент уреаза катализирует только одну реакцию – гидролиз мочевины, протеазы способны расщеплять только белки, но не действуют на углеводы, липиды, нуклеиновые кислоты и другие вещества. С другой стороны, платина способна катализировать различные реакции (гидрирования, дегидрирования, окисления), она катализирует как реакцию получения аммиака из азота и водорода, так и гидрирование непредельных жирных кислот (эту реакцию используют для получения маргарина);

c) ферменты эффективно действуют в мягких условиях: при температуре 0 – 40 о С, при атмосферном давлении, при значениях рН, близких к нейтральным, в более жестких условиях ферменты денатурируют и не проявляют своих каталитических качеств. Для эффективного химического катализа часто требуются жесткие условия – высокое давление, высокая температура и наличие кислот или щелочей. Например, синтез аммиака в присутствии катализаторов проводят при 500 – 550 о С и давлении 15 – 100 МПа;

d) активность ферментов в сравнении с химическими катализаторами может более тонко регулироваться различными факторами. В клетке существует множество веществ как увеличивающих, так и снижающих скорости ферментативных реакций.

классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах

Рисунок 3. Структура кофермента А

Если кофермент прочно связан с ферментом, то в этом случае он представляет простетическую группу сложного белка. Кофакторы могут выполнять следующие функции:

a) участие в катализе;

b) осуществление взаимодействия между субстратом и ферментом;

c) стабилизация фермента.

Холофермент классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментахапофермент + кофактор.

классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах

Рисунок 4. Относительные размеры молекулы фермента и субстрата

Активный центр образуют аминокислотные остатки полипептидной цепи. В двухкомпонентных ферментах в состав активного центра может входить и небелковый компонент. В молекуле фермента присутствуют аминокислотные остатки, которые не участвуют в катализе и во взаимодействии с субстратом. Однако они весьма существенны, так как формируют определенную пространственную структуру фермента. Наиболее часто в составе активного центра содержатся полярные (серин, треонин, цистеин) и заряженные (лизин, гистидин, глутаминовая и аспарагиновая кислоты) аминокислотные остатки. Аминокислотные остатки, образующие активный центр, в полипептидной цепи находятся на значительном расстоянии и оказываются сближенными при формировании третичной структуры (рис. 5).

классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах

Рис. 5. Активный центр

Например, в активный центр химотрипсина (пищеварительного фермента, расщепляющего белки) входят остатки гистидина – 57, аспарагиновой кислоты – 102, серина – 195 (цифрами указаны порядковые номера в полипептидной цепи). Несмотря на удаленность друг от друга этих аминокислотных остатков в полипептидной цепи, в пространстве они расположены рядом и формируют активный центр фермента.

КЛАССИФИКАЦИЯ ФЕРМЕНТОВ, ИХ ФУНКЦИИ И ПРИМЕНЕНИЕ

2.1 Классификация ферментов

Часто названия ферментов образуются путем прибавления суффикса к названию субстрата, на который он воздействует. Например, названия фермента уреаза произошло от английского слова urea – мочевина, протеазы (ферменты, расщепляющие белки) – от слова протеин. Многие ферменты имеют тривиальные названия, не связанные с названием их субстратов, например, пепсин и трипсин. Существуют и систематические названия ферментов, включающие названия субстратов и отражающие характер катализируемой реакции.

Общепринятая классификация делит все ферменты на шесть классов по типу катализируемой реакции:

Трансферазы – переносят группы атомов, метильные, карбоксильные, амино, сульфо, формильные и фосфорильные группы.

Гидролазы – участвуют в гидролитическом расщеплении. Представители этой группы носят названия в соответствии с типом разрываемой связи (пептидазы, гликозидазы, амилазы, эстеразы, липазы, фосфодиэстеразы, фосфатазы, уреаза).

Лиазы – отщепляют группы (например: СО2, Н2О, NH3) от молекулы субстрата (катализируемое исходное вещество) не гидролитическим способом (декарбоксилаза, альдолаза, лиаза, дегидратаза, дезаминаза).

Изомеразы – катализируют внутримолекулярное превращение изомеров (в том числе рацемилизацию, цистрансизомеризацию).

Лигазы – участвуют в реакциях соединения: белковом синтезе, биосинтезе глутамина, активации аминокислот, синтезе жирных кислот.

В свою очередь каждый класс подразделяют на подклассы, подклассы – на подподклассы. Ферментам, образующим подподклассы, присваивается порядковый номер. В итоге каждый фермент имеет свой четырехзначный номер.

Например: фермент, катализирующий реакцию

АТФ + D-глюкоза классификация ферментов история развития учения о ферментах. Смотреть фото классификация ферментов история развития учения о ферментах. Смотреть картинку классификация ферментов история развития учения о ферментах. Картинка про классификация ферментов история развития учения о ферментах. Фото классификация ферментов история развития учения о ферментах АДФ + D-глюкоза – 6 – фосфат,

носит систематическое название АТФ: гексоза 6-фосфотрансфераза.

2.2 Функции ферментов

В определенных частях каждой клетки находится около тысячи разных ферментов. Характерной особенностью всех ферментов является то, что каждый вид из них выполняет определенную функцию, которая присуща только ему одному. По выполняемым функциям ферменты в организме разделяют на группы:

1. Пищеварительные – расщепляют компоненты пищи на простые соединения, которые всасываются стенками кишечника, попадают в кровь и продолжают свой путь до клеток. Данные ферменты содержаться на всем протяжении пищеварительного тракта. Они обитают в слюне, кишечнике, секрете поджелудочной железы.

2. Метаболические – отвечают за обменные процессы, протекающие внутри клетки. Данные ферменты расположены внутри клетки упорядоченно. Они выполняют различные процессы, которые обеспечивают жизнедеятельность клетки. Такими процессами можно считать окислительно-восстановительные реакции, активизация аминокислот, перенос аминокислотных остатков и т.д. При разрушении клеточных мембран такие ферменты проникают в межклеточное пространство и кровь где продолжают развивать свою активность. Лабораторными методами при обнаружении их в анализах крови в зависимости от вида фермента можно установить диагноз, в каком органе происходят патологические изменения.

3. Защитные – ликвидируют воспалительные процессы подобно иммунным агентам.

В организме человека каталитическая функция многих ферментов зависит от наличия определенных коферментов, витаминов, микроэлементов. Отсутствие данных веществ делает ферменты бессильными и в итоге постепенно может привести к патологическим изменениям. Большинство витаминов, а также микроэлементы и коферменты поступают в организм из вне (вместе с пищей). Хотя следует учесть и тот факт, что не вся еда может содержать в своем составе данные вещества. Чем выше температура приготовления пищи, тем сложнее организму использовать питательные вещества для синтеза ферментов, в такой еде также погибают витамины. По этой причине многие диетологи советуют не жарить, а варить или тушить продукты питания.

2.3 Области применения ферментов

Изготовление алкогольных напитков также не обходится без участия ферментов. В этом случае широко применяются ферменты, которые находятся в дрожжах. Разнообразие сортов пива получают именно различными комбинациями комплексных соединений ферментов. Ферменты, также участвуют в растворении осадков в спиртных напитках, например, чтобы в пиве не появлялся осадок в него добавляют протеазы (папаин, пепсин), которые растворяют выпадающие в осадок белковые соединения.

Применение ферментов в медицине связано с их способностью заживлять раны, растворять образующиеся тромбы. Иногда ферменты умышленно вводят в организм для их активизации, а иногда из-за излишней активности ферментов, могут вводить вещества, которые действуют как ингибиторы (вещества, замедляющие протекание химических реакций). Например, под действием отдельных ингибиторов, бактерии теряют способность размножаться и расти.

Применение ферментов в медицине также связано с проведением различных анализов по определению заболеваний. В этом случае ферменты играют роль веществ, вступающих в химическое взаимодействие или способствующие химическим превращениям в физиологических жидкостях организма. В результате получаются определённые продукты химических реакций, по которым в лабораториях распознают наличие того или иного возбудителя заболевания. Среди таких ферментов и их применения наиболее известен фермент глюкозооксидаза который позволяет определить наличие сахара в моче или крови человека. Кроме того, наравне с отмеченным, существуют ферменты, которые способны определять наличие алкоголя в крови. Этот фермент называется алкогольдегидрогеназа.

ЗАКЛЮЧЕНИЕ

Ферменты как биополимеры очень важны в жизни человека. Использование ферментов в медицине сводится к выпуску новых лекарственных средств, в составе которых вещества уже находятся в нужных количествах. Ученые еще не нашли способ стимулирования синтеза недостающих энзимов в организме, однако сегодня широко распространены препараты, которые могут на время восполнить их недостаток.

Ферменты используются в виноделии, пивоварении, получении многих кисломолочных продуктов. Для получения спирта из глюкозы могут использоваться дрожжи, однако для удачного протекания этого процесса достаточно и экстракта из них.

Спустя 100 лет после открытия этого класса веществ человечество узнало о ферментах очень много, но это не является точкой в исследованиях, т.к. технологии с каждым днём улучшаются, и, может быть, скоро мы узнаем что-то новое о ферментах.

СПИСОК ЛИТЕРАТУРЫ

Слесарев, В.И. Химия: Основы химии живого/ В.И. Слесарев.-СПб: Химиздат, 2007. – 784 с.

Тюкавкина, Н.А. Биоорганическая химия/ Н.А Тюкавкина, Ю.И Бауков, С.Э. Зурабян.– М.: ДРОФА, 2014.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *