кодирование и декодирование числовой и символьной информации
Кодирование и декодирование числовой и символьной информации
В процессах восприятия, передачи и хранения информации живыми организмами, человеком и техническими устройствами происходит кодирование информации. В этом случае информация, представленная в одной знаковой системе, преобразуется в другую. Каждый символ исходного алфавита представляется конечной последовательностью символов кодового алфавита. Эта результирующая последовательность называется информационным кодом (кодовым словом, или просто кодом).
Примерами кодов являются последовательность букв в тексте, цифр в числе, двоичный компьютерный код и др.
Код состоит из определенного количества знаков (имеет определенную длину), которое называется длиной кода. Например, текстовое сообщение состоит из определенного количества букв, число — из определенного количества цифр.
Преобразование знаков или групп знаков одной знаковой системы в знаки или группы знаков другой знаковой системы называется перекодированием.
При кодировании один символ исходного сообщения может заменяться одним или несколькими символами нового кода, и наоборот — несколько символов исходного сообщения могут быть заменены одним символом в новом коде. Примером такой замены служат китайские иероглифы, которые обозначают целые слова и понятия.
Кодирование может быть равномерным и неравномерным. При равномерном кодировании все символы заменяются кодами равной длины; при неравномерном кодировании разные символы могут кодироваться кодами разной длины (это затрудняет декодирование). Неравномерный код называют еще кодом переменной длины.
Примером неравномерного кодирования является код азбуки Морзе. Длительное время он использовался для передачи сообщений по телеграфу. Кодовый алфавит включал точку, тире и паузу. При передаче по телеграфу точка означала кратковременный сигнал, тире — сигнал в 3 раза длиннее. Между сигналами букв одного слова делалась пауза длительностью одной точки, между словами — длительностью трех точек, между предложениями — длительностью семи точек.
Вначале код Морзе был создан для букв английского алфавита, цифр и знаков препинания. Принцип этого кода заключался в том, что часто встречающиеся буквы кодировались более простыми сочетаниями точек и тире. Это делало код компактным. Позже код был разработан и для символов других алфавитов, включая русский.
Коды Морзе для некоторых букв.
Чтобы избежать неоднозначности, код Морзе включает также паузы между кодами разных символов.
Декодирование информации
В зависимости от системы кодирования информационный код может или не может быть декодирован однозначно. Равномерные коды всегда могут быть декодированы однозначно.
Для однозначного декодирования неравномерного кода важно, имеются ли в нем кодовые слова, которые являются одновременно началом других, более длинных кодовых слов.
Закодированное сообщение можно однозначно декодировать с начала, если выполняется условие Фано: никакое кодовое слово не является началом другого кодового слова.
Закодированное сообщение можно однозначно декодировать с конца, если выполняется обратное условие Фано: никакое кодовое слово не является окончанием другого кодового слова.
Неравномерные коды, для которых выполняется условие Фано, называются префиксными. Префиксный код — такой неравномерный код, в котором ни одно кодовое слово не является началом другого, более длинного слова. В таком случае кодовые слова можно записывать друг за другом без разделительного символа между ними.
Например, код Морзе не является префиксным — для него не выполняется условие Фано. Поэтому в кодовый алфавит Морзе, кроме точки и тире, входит также символ–разделитель — пауза длиной в тире. Без разделителя однозначно декодировать код Морзе в общем случае нельзя.
Конспект урока по информатике «Кодирование и декодирование информации».
Кодирование для чайников, ч.1
Не являясь специалистом в обозначенной области я, тем не менее, прочитал много специализированной литературы для знакомства с предметом и прорываясь через тернии к звёздам набил, на начальных этапах, немало шишек. При всём изобилии информации мне не удалось найти простые статьи о кодировании как таковом, вне рамок специальной литературы (так сказать без формул и с картинками).
Статья, в первой части, является ликбезом по кодированию как таковому с примерами манипуляций с битовыми кодами, а во второй я бы хотел затронуть простейшие способы кодирования изображений.
0. Начало
Давайте рассмотрим некоторые более подробно.
1.1 Речь, мимика, жесты
1.2 Чередующиеся сигналы
В примитивном виде кодирование чередующимися сигналами используется человечеством очень давно. В предыдущем разделе мы сказали про дым и огонь. Если между наблюдателем и источником огня ставить и убирать препятствие, то наблюдателю будет казаться, что он видит чередующиеся сигналы «включено/выключено». Меняя частоту таких включений мы можем выработать последовательность кодов, которая будет однозначно трактоваться принимающей стороной.
1.3 Контекст
2. Кодирование текста
Текст в компьютере является частью 256 символов, для каждого отводится один байт и в качестве кода могут быть использованы значения от 0 до 255. Так как данные в ПК представлены в двоичной системе счисления, то один байт (в значении ноль) равен записи 00000000, а 255 как 11111111. Чтение такого представления числа происходит справа налево, то есть один будет записано как 00000001.
Итак, символов английского алфавита 26 для верхнего и 26 для нижнего регистра, 10 цифр. Так же есть знаки препинания и другие символы, но для экспериментов мы будем использовать только прописные буквы (верхний регистр) и пробел.
Тестовая фраза «ЕХАЛ ГРЕКА ЧЕРЕЗ РЕКУ ВИДИТ ГРЕКА В РЕЧКЕ РАК СУНУЛ ГРЕКА РУКУ В РЕКУ РАК ЗА РУКУ ГРЕКУ ЦАП».
2.1 Блочное кодирование
Информация в ПК уже представлена в виде блоков по 8 бит, но мы, зная контекст, попробуем представить её в виде блоков меньшего размера. Для этого нам нужно собрать информацию о представленных символах и, на будущее, сразу подсчитаем частоту использования каждого символа:
Кодирование и декодирование числовой и символьной информации
Тема: Кодирование и декодирование информации.
· кодирование – это перевод информации с одного языка на другой (запись в другой системе символов, в другом алфавите)
· обычно кодированием называют перевод информации с «человеческого» языка на формальный, например, в двоичный код, а декодированием – обратный переход
· один символ исходного сообщения может заменяться одним символом нового кода или несколькими символами, а может быть и наоборот – несколько символов исходного сообщения заменяются одним символом в новом коде (китайские иероглифы обозначают целые слова и понятия)
· кодирование может быть равномерное и неравномерное;
при равномерном кодировании все символы кодируются кодами равной длины;
при неравномерном кодировании разные символы могут кодироваться кодами разной длины, это затрудняет декодирование
· закодированное сообщение можно однозначно декодировать с начала, если выполняется условие Фано: никакое кодовое слово не является началом другого кодового слова;
· закодированное сообщение можно однозначно декодировать с конца, если выполняется обратное условие Фано: никакое кодовое слово не является окончанием другого кодового слова;
· условие Фано – это достаточное, но не необходимое условие однозначного декодирования.
Пример задания:
Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А–00, Б–010, В–011, Г–101, Д–111. Можно ли сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно? Коды остальных букв меняться не должны. Выберите правильный вариант ответа.
1) для буквы Б – 01 2) это невозможно
3) для буквы В – 01 4) для буквы Г – 01
Решение (1 способ, проверка условий Фано):
1) для однозначного декодирования достаточно, чтобы выполнялось условие Фано или обратное условие Фано;
2) проверяем последовательно варианты 1, 3 и 4; если ни один из них не подойдет, придется выбрать вариант 2 («это невозможно»);
«прямое» условие Фано не выполняется (код буквы Б совпадает с началом кода буквы В);
«обратное» условие Фано не выполняется (код буквы Б совпадает с окончанием кода буквы Г); поэтому этот вариант не подходит ;
«прямое» условие Фано не выполняется (код буквы В совпадает с началом кода буквы Б);
«обратное» условие Фано не выполняется (код буквы В совпадает с окончанием кода буквы Г); поэтому этот вариант не подходит ;
«прямое» условие Фано не выполняется (код буквы Г совпадает с началом кодов букв Б и В); но «обратное» условие Фано выполняется (код буквы Г не совпадает с окончанием кодов остальных буквы); поэтому этот вариант подходит ;
Решение (2 способ, дерево):
1) построим двоичное дерево, в котором от каждого узла отходит две ветки, соответствующие выбору следующей цифры кода – 0 или 1; разместим на этом дереве буквы А, Б, В, Г и Д так, чтобы их код получался как последовательность чисел на рёбрах, составляющих путь от корня до данной буквы (красным цветом выделен код буквы В – 011):
2) здесь однозначность декодирования получается за счёт того, что при движении от корня к любой букве в середине пути не встречается других букв (выполняется условие Фано);
3) теперь проверим варианты ответа: предлагается перенести одну из букв, Б, В или Г, в узел с кодом 01, выделенный синим цветом
4) видим, что при переносе любой из этих букв нарушится условие Фано; например, при переносе буквы Б в синий узел она оказывается на пути от корня до В, и т.д.; это значит, что предлагаемые варианты не позволяют выполнить прямое условие Фано
5) хочется уже выбрать вариант 2 («это невозможно»), но у нас есть еще обратное условие Фано, для которого тоже можно построить аналогичное дерево, в котором движение от корня к букве дает её код с конца (красным цветом выделен код буквы В – 011, записанный с конца):
видно, что обратное условие Фано также выполняется, потому что на пути от корня к любой букве нет других букв
6) в заданных вариантах ответа предлагается переместить букву Б, В или Г в синий узел; понятно, что Б или В туда перемещать нельзя – перемещённая буква отказывается на пути от корня к букве Г; а вот букву Г переместить можно, при этом обратное условие Фано сохранится
Ещё пример задания:
Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать двоичную последовательность, появляющуюся на приёмной стороне канала связи. Использовали код:
А–1, Б–000, В–001, Г–011. Укажите, каким кодовым словом должна быть закодирована буква Д. Длина этого кодового слова должна быть наименьшей из всех возможных. Код должен удовлетворять свойству однозначного декодирования.
1) 00 2) 01 3)11 4) 010
8) заметим, что для известной части кода выполняется условие Фано – никакое кодовое слово не является началом другого кодового слова
9) если Д = 00, такая кодовая цепочка совпадает с началом Б = 000 и В = 001, невозможно однозначно раскодировать цепочку 000000: это может быть ДДД или ББ; поэтому первый вариант не подходит
10) если Д = 01, такая кодовая цепочка совпадает с началом Г = 011, невозможно однозначно раскодировать цепочку 011: это может быть ДА или Г; поэтому второй вариант тоже не подходит
11) если Д = 11, условие Фано тоже нарушено: кодовое слово А = 1 совпадает с началом кода буквы Д, невозможно однозначно раскодировать цепочку 111: это может быть ДА или ААА; третий вариант не подходит
12) для четвертого варианта, Д = 010, условие Фано не нарушено;
· условие Фано – это достаточное, но не необходимое условие однозначного декодирования, поэтому для уверенности полезно найти для всех «неправильных» вариантов контрпримеры: цепочки, для которых однозначное декодирование невозможно
Еще пример задания:
Для кодирования букв А, Б, В, Г решили использовать двухразрядные последовательные двоичные числа (от 00 до 11, соответственно). Если таким способом закодировать последовательность символов БАВГ и записать результат шестнадцатеричным кодом, то получится
14) из условия коды букв такие: A – 00, Б –01, В – 10 и Г – 11, код равномерный
15) последовательность БАВГ кодируется так: 01 00 10 11 = 1001011
16) разобьем такую запись на тетрады справа налево и каждую тетраду переведем в шестнадцатеричную систему (то есть, сначала в десятичную, а потом заменим все числа от 10 до 15 на буквы A, B, C, D, E, F); получаем
1001011 = 0100 10112 = 4B 16
17) правильный ответ – 1.
· расчет на то, что при переводе тетрад в шестнадцатеричную систему можно забыть заменить большие числа (10–15) на буквы (10112 = 11, получаем неверный ответ 41116)
· может быть дан неверный ответ, в котором нужные цифры поменяли местами (расчет на невнимательность), например, B 416
· в ответах дана последовательность, напоминающая исходную (неверный ответ BACD 16), чтобы сбить случайное угадывание
Еще пример задания:
Для 5 букв латинского алфавита заданы их двоичные коды (для некоторых букв – из двух бит, для некоторых – из трех). Эти коды представлены в таблице:
Кодирование и декодирование числовой и символьной информации
Электронные облака
Лекции
Рабочие материалы
Тесты по темам
Template tips
Задачи
Логика вычислительной техники и программирования
Лекция «Технология кодирования и измерения количества информации»
Качество и количество информации
Анализируя информацию, мы сталкиваемся с необходимостью определения качества и определения количества полученной информации. Определить качество информации чрезвычайно сложно, а часто и вообще невозможно. Какие-либо сведения, например исторические, могут десятилетиями считаться ненужными и вдруг их ценность может резко возрасти.
Вместе с тем определить количество информации не только можно, но и нужно. Это необходимо для того, чтобы сравнить друг с другом различные массивы информации, а также определить, какие размеры должны иметь материальные объекты (бумага, магнитные носители и т.д.), хранящие эту информацию.
Далее, говоря об измерении информации, мы будем иметь в виду определение ее количества.
Единая форма кодирования и измерения количества информации
Как измерять количество информации? Для этого нужно иметь универсальный способ, позволяющий представить любую ее форму (текстовую, графическую и др.) в едином стандартном виде.
За такой способ принята так называемая двоичная форма представления информации. Она заключается в записи любой информации в виде последовательности только двух символов: 0 и 1 (то есть в виде двоичных чисел) и с технической точки зрения наиболее проста и удобна (есть ток/нет тока, намагничено/размагничено, высокое напряжение/низкое напряжение).
Рассмотрим сначала одноразрядное двоичное число – бит. Оно может принимать два различных значения: 0 и 1
Если с помощью одноразрядного числа попробовать закодировать какую-либо информацию (например, ответ на вопрос «идет ли дождь?»), то мы успешно справимся с поставленной задачей, поскольку количество различных вариантов кодирования в данном случае равно двум (0-не идет, 1-идет).
К = 2 n °, где n – число разрядов двоичного числа.
В общем случае, верно, что чем больше различных видов однотипной информации требуется закодировать, тем больше разрядов двоичного числа (бит) требуется.
Единицы измерения информации
Таким образом, можно утверждать: информацию можно измерять в битах, то есть в количестве двоичных разрядов. Бит является наименьшей единицей измерения количества информации.
В 100 Мб можно уместить:
| Страниц текста | 50000 |
| Цветных слайдов высочайшего качества | 150 |
| Аудиозапись | 1,5 часа |
| Музыкальный фрагмент качества CD-стерео | 10 минут |
| Фильм высокого качества записи | 15 секунд |
| Протоколы операций по банковским счетам | За 1000 лет |
Представление текстовой информации в компьютере. Кодовые таблицы
Кодирование текстового сообщения
Каждому символу ставится в соответствие двоичное число, причем таким образом, что чем дальше символ расположен от начала алфавита, тем больше значение двоичного числа, которое является кодом данного символа. Сколько разрядов (бит) требуется, чтобы закодировать все буквы, знаки препинания, математические и специальные символы? Легко подсчитать:
Находим, что для кодирования всех символов необходимо 8-разрядное двоичное число. Каждому символу ставится в соответствие свое уникальное значение восьмиразрядного двоичного числа. Так, если 10000000 – код буквы А, а 10001100 – код буквы М, то слово «МАМА» кодируется последовательностью из 32-х двоичных цифр (бит):
10000000 10001100 10000000 10001100, именно в такой форме данное текстовое сообщение и будет закодировано компьютером с использованием ровно 32-х бит.
Таблица кодирования ASCII
Как мы уже выяснили, традиционно для кодирования одного символа используется 8 бит. И, когда люди определились с количеством бит, им осталось договориться о том, каким кодом кодировать тот или иной символ, чтобы не получилось путаницы, т.е. необходимо было выработать стандарт – все коды символов сохранить в специальной таблице кодов. В первые годы развития вычислительной техники таких стандартов не существовало, а сейчас наоборот, их стало очень много, но они противоречивы. Первыми решили эти проблемы в США, в Институте стандартизации. Этот институт ввел в действие таблицу кодов ASCII (American Standard Code for Information Interchange – стандартный код информационного обмена США).
Рассмотрим таблицу кодов ASCII:
Таблица ASCII разделена на две части. Первая – стандартная – содержит коды от 0 до 127. Вторая – расширенная – содержит символы с кодами от 128 до 255.
Первые 32 кода отданы производителям аппаратных средств и называются они управляющие, т.к. эти коды управляют выводом данных. Им не соответствуют никакие символы.
Коды с 32 по 127 соответствуют символам английского алфавита, знакам препинания, цифрам, арифметическим действиям и некоторым вспомогательным символам.
Коды расширенной части таблицы ASCII отданы под символы национальных алфавитов, символы псевдографики и научные символы.
Все буквы расположены в них по алфавиту, а цифры – по возрастанию. Этот принцип последовательного кодирования позволяет определить код символа, не заглядывая в таблицу.
Коды цифр берутся из этой таблицы только при вводе и выводе и если они используются в тексте. Если же они участвуют в вычислениях, то переводятся в двоичную систему счисления.
Альтернативные системы кодирования кириллицы
Таблица Unicode разделена на несколько областей. Область с кодами от 0000 до 007F содержит символы набора Latin 1 (младшие байты соответствуют кодировке ISO 8859-1). Далее идут области, в которых расположены знаки различных письменностей, а также знаки пунктуации и технические символы. Часть кодов зарезервирована для использования в будущем (29000). 6000 кодовых комбинаций оставлено программистам.
Символам кириллицы выделены коды в диапазоне от 0400 до 0451.
Использование Unicode значительно упрощает создание многоязычных документов, публикаций и программных приложений.
Решение задач
1. Закодируйте с помощью ASCII слово: МИР
Решение: открываем таблицу ASCII,
по таблице ищем букву М, её код 204
по таблице ищем букву И, её код 200
по таблице ищем букву Р, её код 208
Ответ: код слова МИР – 204 200 208
2. Декодируйте тексты, заданные десятичным кодом: 192 203 195 206 208 200 210 204
Решение: открываем таблицу ASCII, в таблице ищем коды и соответствующую им букву:
192 – А; 203 – Л; 195 – Г; 206 – О; 208 – Р; 200 – И; 210 – Т; 204 – М, т. е. получили слово: АЛГОРИТМ
Ответ: 192 203 195 206 208 200 210 204 – АЛГОРТИМ
3. Десятичный код буквы «I» в таблице ASCII равен 73. Не пользуясь таблицей, составьте последовательность кодов, соответствующих слову MIR
Решение: Зная, что все буквы расположены по алфавиту, а цифры по возрастанию делаем следующие выводы: I – 73, J – 74, K – 75, L – 76, M – 77, N – 78, O – 79, P – 80, Q – 81, R – 82
Ответ: MIR – 77 73 82
4. Каков информационный объём текста, содержащего слово МИР:
а) в 16-битовой кодировке; б) в 8-битовой кодировке
Решение:
Зная, что в 8-битовой кодировке 1 символ – 8 бит делаем следующие выводы:
МИР – 3 символа = 24 бит (3*8)
Зная, что в 16-битовой кодировке 1 символ – 16 бит делаем следующие выводы:
МИР – 3 символа = 48 бит (3*16)
Ответ: а) 48 бит; б) 24 бит.
5. Текст занимает полных 2 страницы. На каждой странице размещается 45 строк по 45 символов. Определить объём оперативной памяти, который займёт этот текст.
Кодирование графической информации
Общие понятия о графической информации
Графическая информация представляет собой изображение, сформированное из определенного числа точек – пикселей. Добавим к этой информации новые сведения. Процесс разбиения изображения на отдельные маленькие фрагменты (точки) называется пространственной дискретизацией. Ее можно сравнить с построением рисунка из мозаики. При этом каждой мозаике (точке) присваивается код цвета.
От количества точек зависит качество изображения. Оно тем выше, чем меньше размер точки и соответственно большее их количество составляет изображение. Такое количество точек называется разрешающей способностью и обычно существуют четыре основных значений этого параметра: 640×480, 800×600, 1024×768, 1280×1024.
Качество изображения зависит также от количества цветов, т.е. от количества возможных состояний точек изображения, т.к. при этом каждая точка несет большее количество информации. Используемый набор цветов образует палитру цветов.
Кодирование цвета
Рассмотрим, каким образом происходит кодирование цвета точек. Для кодирования цвета применяется принцип разложения цвета на составляющие. Их три: красный цвет (Red, R), синий (Blue, В) и зелёный (Green, G). Смешивая эти составляющие, можно получать различные оттенки и цвета – от белого до черного.
Сколько бит необходимо выделить для каждой составляющей, чтобы при кодировании изображения его качество было наилучшим?
Если рисунок черно-белый, то общепринятым на сегодняшний день считается представление его в виде комбинации точек с 256 градациями серого, т.е. для кодирования точки достаточно 1 байта.
Если же изображение цветное, то с помощью 1 байта можно также закодировать 256 разных оттенков цветов. Этого достаточно для рисования изображений типа тех, что мы видим в мультфильмах. Для изображений же живой природы этого недостаточно. Если увеличить количество байт до двух (16 бит), то цветов станет в два раза больше, т.е. 65536. Это уже похоже на то, что мы видим на фотографиях и на картинках в журналах, но все равно хуже, чем в живой природе. Увеличим еще количество байтов до трех (24 бита). В этом случае можно закодировать 16,5 миллионов различных цветов. Именно такой режим позволяет работать с изображениями наилучшего качества.
Количество бит, необходимое для кодирования цвета точки называется глубиной цвета. Наиболее распространенными значениями глубины цвета являются 4, 8, 16 и 24 бита на точку.
Решение задач
1. Какой объём видеопамяти необходим для хранения четырёх страниц изображения при условии, что разрешающая способность дисплея равна 640Х480 точек, а используемых цветов – 32?
Теперь все параметры нам известны, находим объём:
V = 640*480*5*4 =6144000 бит = 750 Кбайт (т.к. в 1 байте – 8 бит и в 1 Кбайте – 1024 байт)
Ответ: 750 Кбайт
2. 256-цветный рисунок содержит 1 Кбайт информации. Из скольки точек он состоит?
Переведём известный объём в биты: 1Кбайт = 1024 байт*8бит = 8192 бит
Зная глубину и объём находим количество точек на изображении: 8192:8 = 1024 точек
Кодирование звуковой информации
Оцифровка звука
Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала. Непрерывный сигнал не несет в себе информации, поэтому он должен быть превращен в последовательность двоичных нулей и единиц – двоичный (цифровой) код.
Оцифровку звука выполняет специальное устройство на звуковой плате. Называется оно аналого-цифровой преобразователь (АЦП). Обратный процесс – воспроизведение закодированного звука производится с помощью цифро-аналогового преобразователя (ЦАП).
Весь процесс кодирования и декодирования представить в виде следующей схемы:
Схема кодирования звука:
В процессе кодирования непрерывного звукового сигнала производится дискретизация по времени, или, как говорят, «временная дискретизация». Звуковая волна разбивается на отдельные маленькие временные участки и для каждого участка устанавливается определенная величина амплитуд. Данный метод называется импульсно-амплитудной модуляцией РСМ Code Modulation).
Таким образом, гладкая кривая заменяется на последовательность «ступенек».. Каждой «ступеньке» присваивается значение громкости звука (1, 2, 3). Чем больше «ступенек», тем большее количество уровней громкости выделено в процессе кодирования, и тем большее количество информации будет нести значение каждого уровня и более качественным будет звучание.
Характеристики оцифрованного звука
Качество звука зависит от двух характеристик – глубины кодирования и частоты дискретизации. Рассмотрим эти характеристики.
Современные звуковые карты обеспечивают 16-битную глубину кодирования звука, и тогда общее количество различных уровней будет: N=2 16 = 65536.
Частота дискретизации (М) – это количество измерений уровня звукового сигнала в единицу времени. Эта характеристика показывает качество звучания и точность процедуры двоичного кодирования. Измеряется в герцах (Гц). Одно измерение за одну секунду соответствует частоте 1 Гц, 1000 измерений за одну секунду – 1 килогерц (кГц). Частота дискретизации звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц – качеству звучания аудио-CD.
Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и глубины кодирования звука, равной 16 бит. Для мрачного, приглушенного звука характерны следующие параметры: частота дискретизации – 11 кГц, глубина кодирования – 8 бит.
| Глубина кодирования | Частота дискретизации | |
| Радиотрансляция | 8 бит | До 8 кГц |
| Среднее качество | 8 бит или 16 бит | 8-48 кГц |
| Звучание CD-диска | 16 бит | До 48 кГц |
Для того, чтобы найти объем звуковой информации, необходимо воспользоваться следующей формулой:
V= M*I*t,
где М — частота дискретизации (в Гц),
I — глубина кодирования (в битах),
t — время звучания (в секундах).
Решение задач
1. Определить объём памяти для хранения моноаудиофайла, время звучания которого составляет пять минут при частоте дискретизации 44 кГц и глубине кодирования 16 бит.
Решение: Воспользуемся формулой: V = M*I*t
В нашем случае М = 44 кГц = 44000 Гц
I = 16 бит
t = 5 минут,
подставляем в формулу и получаем:
V = 44000*16*5 = 3520000 бит = 430 Кбайт (примерно)





