кодирование и обработка графической информации
Конспект урока: Кодирование и обработка графической информации.
Новые аудиокурсы повышения квалификации для педагогов
Слушайте учебный материал в удобное для Вас время в любом месте
откроется в новом окне
Выдаем Удостоверение установленного образца:
«IQ и EQ как основа успешного обучения»
Тема урока: Кодирование и обработка графической информации.
Цель урока: дать учащимся понятие о графике и её кодировке, палитре цветов
для развития умений работать коллективно, индивидуально;
для развития мышления при классификации учебного материала;
для развития умений пользоваться ПК.
коммуникабельность при коллективной работе и в парах;
самостоятельность, уверенность, эстетичность при выполнении практической работы на ПК.
Отсутствующие, приготовить тетради ручки
Примером аналогового представления графической информации может служить живописное полотно, цвет которого изменяется непрерывно, а дискретного — изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета.
Графические изображения из аналоговой формы в цифровую преобразуются путем пространственной дискретизации. Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики. Изображение разбивается на отдельные маленькие элементы (точки, или пиксели), причем каждый элемент может иметь свой цвет (красный, зеленый, синий и т. д.).
Пиксель — минимальны участок изображения, для которого независимым образом можно задать цвет.
Важнейшей характеристикой качества растрового изображения является разрешающая способность.
Разрешающая способность растрового изображения определяется количеством точек как по горизонтали, так и по вертикали на единицу длины изображения.
Чем меньше размер точки, тем больше разрешающая способность (больше строк растра и точек в строке) и, соответственно, выше качество изображения.
Величина разрешающей способности обычно выражается в (точек на дюйм), т. е. в количестве точек в полоске изображения длиной один дюйм (1 дюйм = 2,54 см).
Глубина цвета . В процессе дискретизации могут использоваться различные палитры цветов, т. е. наборы цветов, в которые могут быть окрашены точки изображения. Каждый цвет можно рассматривать как возможное состояние точки. Количество цветов N в палитре и количество информации I, необходимое для кодирования цвета каждой точки, связаны между собой и могут быть вычислены по формуле: N =2 I
В простейшем случае (черно-белое изображение без градаций серого цвета) палитра цветов состоит всего из двух цветов (черного и белого). Каждая точка экрана может принимать одно из двух состояний — «черная» или «белая», следовательно, по формуле можно вычислить, какое количество информации необходимо, чтобы закодировать цвет каждой точки.
В двоичной системе 1 пиксель = 1 бит
Количество информации или информационный объем , которое используется для кодирования цвета точки изображения, называется глубиной цвета .
Глубина цвета и количество цветов в палитре
Черно-белое растровое изображение имеет размер 10*10 точек. Какой информационный объем имеет изображение?
100 точек = 100 бит
Графические режимы монитора .
Качество изображения на экране монитора зависит от величины пространственного разрешения и глубины цвета.
Пространственное разрешение экрана монитора определяется как произведение количества строк изображения на количество точек в строке. Монитор может отображать информацию с различными пространственными разрешениями (800(строк) х 600(количество точек в строке), 1024 х 768, 1152 х 864 и выше).
Глубина цвета измеряется в битах на точку и характеризует количество цветов, в которые могут быть окрашены точки изображения.
Количество отображаемых цветов также может изменяться в широком диапазоне, от 256 (глубина цвета 8 битов) до более чем 16 миллионов (глубина цвета 24 бита).
Чем больше пространственное разрешение и глубина цвета, тем выше качество изображения.
Периодически, с определенной частотой, коды цветов точек считываются из видеопамяти и точки отображаются на экране монитора. Частота считывания изображения влияет на стабильность изображения на экране. В современных мониторах обновление изображения происходит с видеокарты частотой 75 и более раз в секунду, что обеспечивает комфортность восприятия изображения пользователем компьютера (человек не замечает мерцания изображения). Для сравнения можно напомнить, что частота смены кадров в кино составляет 24 кадра в секунду.
Палитры цветов в системах цветопередачи RGB и CMYK
Сумма красного, зеленого и синего цветов воспринимается человеком как белый цвет, их отсутствие — как черный, а различные их сочетания — как многочисленные оттенки цветов.
( Red — красный, Green — зеленый, Blue — синий).
Цвета в палитре RGB формируются путем сложения базовых цветов, каждый из которых может иметь различную интенсивность. Цвет палитры Color можно определить с помощью формулы
При минимальных интенсивностях всех базовых цветов получается черный цвет, при максимальных интенсивностях — белый цвет. При максимальной интенсивности одного цвета и минимальной двух других — красный, зеленый и синий цвета. Наложение зеленого и синего цветов образует голубой цвет ( Cyan ), наложение красного и зеленого цветов — желтый цвет ( Yellow ), наложение красного и синего цветов — пурпурный цвет ( Magenta ) (табл. 1).
Таблица 1. Формирование цветов в системе цветопередачи RGB
Урок информатики по теме «Кодирование и обработка графической информации»
Урок 1. Кодирование и обработка графической информации.
Цели урока:
Задачи урока:
Тип урока: урок изучения нового материала и совершенствования знаний и умений.
Вид урока: комбинированный.
Формы организации работы на уроке: индивидуальная
Оборудование урока: компьютеры, мультимедиа проектор.
Программное обеспечение: Windows XP, MS Office.
Методическое обеспечение урока: презентация по теме урока, подготовленная в Power Point, учебник по информатике для 10 класса, электронный файл.
Рекомендации по проведению урока: Для продуктивной работы на уроке следует сопровождать теоретическую часть занятия демонстрацией слайдов компьютерной презентации. Часть дидактического материала урока подготовлено в виде раздаточного материала – это экономит время занятия, материал лучше воспринимается учащимися. Часть учебного материала подготовлена в электронном виде, что позволяет каждому учащемуся работать в своем темпе, достигать своих результатов в соответствии с имеющимися возможностями.
План:
Ход работы
I. Постановка целей урока.
II. Изложение нового материала.
Объяснение нового материала сопровождается электронной презентацией (Приложение 1, файл у автора).
Для снятия напряжения глаз после работы с аудиовизуальными средствами учащимся предлагается небольшой комплекс гимнастики для глаз
Гимнастика для глаз
Все упражнения выполняются по 2-3 раза:
Учащиеся строят таблицу в рабочей тетради, которую заполняют во время самостоятельной работы с учебником или за компьютером, где предварительно размещён файл с информацией (Приложение 2), (примерное заполнение таблицы в Приложении 3).
Векторная и растровая графика.
| Критерии сравнения | Растровая графика | Векторная графика |
| Принцип формирования изображения | ||
| Примеры | ||
| Изображение формируется из… | ||
| Качество изображения | ||
| Информационный объем изображения | ||
| Изменения изображения при масштабировании | ||
| Представление объектов реального мира | ||
| Особенности печати изображения |
Совместная проверка правильности заполнения таблицы, выявление допущенных ошибок, самооценка работы.
Выполнение практической работы за компьютером: «Создание векторного изображения в текстовом редакторе Word, с помощью панели рисования», рисунок на выбор учащегося (Приложение 4).
III. Итоги урока.
Оценить работу класса и назвать учащихся, отличившихся на уроке.
IV. Информационный этап
Домашнее задание подготовлено в печатном варианте и в электронном, электронный вариант можно скачать на информационном портале www.dnevnik.ru.
Домашнее задание: Вычислить объем видеопамяти:
| Разрешающая способность экрана | Глубина цвета (битов на точку) в байтах | |||
| 8 | 16 | 24 | 32 | |
| 800×600 | ||||
| 1024×768 | ||||
Литература: учебник «Информатика и ИКТ. Базовый уровень» для 10 класса и 11 класса, автор: Угринович Н.Д., Москва, БИНОМ, Лаборатория знаний, 2010.
Информатика. 10 класс
Конспект урока
Информатика, 10 класс. Урок № 17.
Тема — Кодирование графической и звуковой информации
Большую часть информации человек получает с помощью зрения и слуха. Важность этих органов чувств обусловлена развитием человека как биологического вида, поэтому человеческий мозг с большой скоростью способен обрабатывать огромное количество графической и звуковой информации.
С появлением компьютеров возникла огромная потребность научить их обрабатывать такую информацию. Как же такую информацию может обработать компьютер?
Итак, кодирование графической информации осуществляется двумя различными способами: векторным и растровым
Программы, работающие с векторной графикой, хранят информацию об объектах, составляющих изображение в виде графических примитивов: прямых линий, дуг окружностей, прямоугольников, закрасок и т.д.
Достоинства векторной графики:
— Преобразования без искажений.
— Маленький графический файл.
— Рисовать быстро и просто.
— Независимое редактирование частей рисунка.
— Высокая точность прорисовки.
— Редактор быстро выполняет операции.
Недостатки векторной графики:
— Векторные изображения выглядят искусственно.
— Ограниченность в живописных средствах.
Программы растровой графики работают с точками экрана (пикселями). Это называется пространственной дискретизацией.
КОДИРОВАНИЕ РАСТРОВОЙ ГРАФИКИ
Давайте более подробно рассмотрим растровое кодирование информации.
Компьютер запоминает цвет каждой точки, а пользователь из таких точек собирает рисунок.
При этом зная количество пикселей по вертикале и горизонтали, мы сможем найти — разрешающую способность изображения.
Разрешающая способность находится по формуле:
где n, m — количество пикселей в изображении по вертикали и горизонтали.
В процессе дискретизации каждый пиксель может принимать различные цвета из палитры цветов. При этом зная количество цветов, которые можно использовать в палитре и воспользовавшись формулой Хартли, мы сможем найти количество информации, которое используется для кодирования цвета точки, что мы будем называть глубиной цвета.
где N — количество цветов в палитре;
Таким образом, чтобы найти вес изображения достаточно перемножить разрешающую способность изображения на глубину цвета: L=P*i.
Каким именно образом возможно закодировать пиксель? Для этого используются кодировочные палитры.
КОДИРОВОЧНАЯ ПАЛИТРА RGB
Когда художник рисует картину, цвета он выбирает по своему вкусу. Но цвет в компьютере надо стандартизировать, чтобы его можно было распознать. Поэтому надо определить, что такое каждый цвет.
В экспериментах по производству цветных стекол М. В. Ломоносов показал, что получить любой цвет возможно, используя три различных цвета.
Этот факт был обобщен Германом Грассманом в виде законов аддитивного синтеза цвета.
Давайте рассмотрим два из этих законов:
— Закон трехмерности. С помощью трех независимых цветов можно, смешивая их в однозначно определенной пропорции, выразить любой цвет.
— Закон непрерывности. При непрерывном изменении пропорции, в которой взяты компоненты цветовой смеси, получаемый цвет также меняется непрерывно.
Из биологии вы знаете, что рецепторы человеческого глаза делятся на две группы: палочки и колбочки. Палочки более чувствительны к интенсивности поступаемого света, а колбочки — к длине волны.
Если посмотреть, как распределяется количество колбочек по тому, на какую длину волны они «настроены», то количество колбочек «настроенных» на синий, красный и зеленый цвета окажется больше.
Поэтому такие цвета были взяты основными для построения цветовой модели, которая получила название RGB (Red, Green, Blue). То есть задавая количество любого из этих трех цветов, можно получить любой другой. Для кодирования каждого цвета было выделено 8 бит (режим True-Color). Таким образом, количество каждого цвета может изменяться от 0 до 255, часто это количество выражается в шестнадцатеричной системе счисления (от 0 до FF).
Так как описание цвета происходит определением трех величин, то это наводит на мысль считать их координатами точки в пространстве. Получается, что координаты цветов заполняют куб.
При этом яркость цвета определяется тем насколько близка к максимальному значению хотя бы одна координата из трех.
КОДИРОВАНИЕ ЗВУКОВОЙ ИНФОРМАЦИИ
Давайте перейдем к кодированию звуковой информации.
Из курса физики вам всем известно, что звук — это непрерывная волна с изменяющейся амплитудой и частотой.
Для того, чтобы компьютер мог обрабатывать непрерывный звуковой сигнал, он должен быть дискретизирован, т. е. превращен в последовательность электрических импульсов (двоичных нулей и единиц).
Для этого звуковая волна разбивается на отдельные временные участки.
Гладкая кривая заменяется последовательностью «ступенек». Каждой «ступеньке» присваивается значение громкости звука. Чем больше количество уровней громкости, тем больше количество информации будет нести значение каждого уровня и более качественным будет звучание. Причем, чем больше будет количество измерений уровня звукового сигнала в единицу времени, тем качественнее будет звучание. Эта характеристика называется частотой дискретизации Данная характеристика измеряется в Гц.
При этом на каждое измерение выделяется одинаковое количество бит. Такая характеристика называется — глубина кодирования.
Таким образом, чтобы подсчитать вес звуковой волны достаточно перемножить частоту дискретизации, глубины кодирования и времени звучания такого звука. При этом, рассматривая современное звучание, количество звуковых волн может быть различное, например, для стереозвука — это 2, а для квадрозвука — 4.
Информатика. 10 класс
Конспект урока
Информатика, 10 класс. Урок № 17.
Тема — Кодирование графической и звуковой информации
Большую часть информации человек получает с помощью зрения и слуха. Важность этих органов чувств обусловлена развитием человека как биологического вида, поэтому человеческий мозг с большой скоростью способен обрабатывать огромное количество графической и звуковой информации.
С появлением компьютеров возникла огромная потребность научить их обрабатывать такую информацию. Как же такую информацию может обработать компьютер?
Итак, кодирование графической информации осуществляется двумя различными способами: векторным и растровым
Программы, работающие с векторной графикой, хранят информацию об объектах, составляющих изображение в виде графических примитивов: прямых линий, дуг окружностей, прямоугольников, закрасок и т.д.
Достоинства векторной графики:
— Преобразования без искажений.
— Маленький графический файл.
— Рисовать быстро и просто.
— Независимое редактирование частей рисунка.
— Высокая точность прорисовки.
— Редактор быстро выполняет операции.
Недостатки векторной графики:
— Векторные изображения выглядят искусственно.
— Ограниченность в живописных средствах.
Программы растровой графики работают с точками экрана (пикселями). Это называется пространственной дискретизацией.
КОДИРОВАНИЕ РАСТРОВОЙ ГРАФИКИ
Давайте более подробно рассмотрим растровое кодирование информации.
Компьютер запоминает цвет каждой точки, а пользователь из таких точек собирает рисунок.
При этом зная количество пикселей по вертикале и горизонтали, мы сможем найти — разрешающую способность изображения.
Разрешающая способность находится по формуле:
где n, m — количество пикселей в изображении по вертикали и горизонтали.
В процессе дискретизации каждый пиксель может принимать различные цвета из палитры цветов. При этом зная количество цветов, которые можно использовать в палитре и воспользовавшись формулой Хартли, мы сможем найти количество информации, которое используется для кодирования цвета точки, что мы будем называть глубиной цвета.
где N — количество цветов в палитре;
Таким образом, чтобы найти вес изображения достаточно перемножить разрешающую способность изображения на глубину цвета: L=P*i.
Каким именно образом возможно закодировать пиксель? Для этого используются кодировочные палитры.
КОДИРОВОЧНАЯ ПАЛИТРА RGB
Когда художник рисует картину, цвета он выбирает по своему вкусу. Но цвет в компьютере надо стандартизировать, чтобы его можно было распознать. Поэтому надо определить, что такое каждый цвет.
В экспериментах по производству цветных стекол М. В. Ломоносов показал, что получить любой цвет возможно, используя три различных цвета.
Этот факт был обобщен Германом Грассманом в виде законов аддитивного синтеза цвета.
Давайте рассмотрим два из этих законов:
— Закон трехмерности. С помощью трех независимых цветов можно, смешивая их в однозначно определенной пропорции, выразить любой цвет.
— Закон непрерывности. При непрерывном изменении пропорции, в которой взяты компоненты цветовой смеси, получаемый цвет также меняется непрерывно.
Из биологии вы знаете, что рецепторы человеческого глаза делятся на две группы: палочки и колбочки. Палочки более чувствительны к интенсивности поступаемого света, а колбочки — к длине волны.
Если посмотреть, как распределяется количество колбочек по тому, на какую длину волны они «настроены», то количество колбочек «настроенных» на синий, красный и зеленый цвета окажется больше.
Поэтому такие цвета были взяты основными для построения цветовой модели, которая получила название RGB (Red, Green, Blue). То есть задавая количество любого из этих трех цветов, можно получить любой другой. Для кодирования каждого цвета было выделено 8 бит (режим True-Color). Таким образом, количество каждого цвета может изменяться от 0 до 255, часто это количество выражается в шестнадцатеричной системе счисления (от 0 до FF).
Так как описание цвета происходит определением трех величин, то это наводит на мысль считать их координатами точки в пространстве. Получается, что координаты цветов заполняют куб.
При этом яркость цвета определяется тем насколько близка к максимальному значению хотя бы одна координата из трех.
КОДИРОВАНИЕ ЗВУКОВОЙ ИНФОРМАЦИИ
Давайте перейдем к кодированию звуковой информации.
Из курса физики вам всем известно, что звук — это непрерывная волна с изменяющейся амплитудой и частотой.
Для того, чтобы компьютер мог обрабатывать непрерывный звуковой сигнал, он должен быть дискретизирован, т. е. превращен в последовательность электрических импульсов (двоичных нулей и единиц).
Для этого звуковая волна разбивается на отдельные временные участки.
Гладкая кривая заменяется последовательностью «ступенек». Каждой «ступеньке» присваивается значение громкости звука. Чем больше количество уровней громкости, тем больше количество информации будет нести значение каждого уровня и более качественным будет звучание. Причем, чем больше будет количество измерений уровня звукового сигнала в единицу времени, тем качественнее будет звучание. Эта характеристика называется частотой дискретизации Данная характеристика измеряется в Гц.
При этом на каждое измерение выделяется одинаковое количество бит. Такая характеристика называется — глубина кодирования.
Таким образом, чтобы подсчитать вес звуковой волны достаточно перемножить частоту дискретизации, глубины кодирования и времени звучания такого звука. При этом, рассматривая современное звучание, количество звуковых волн может быть различное, например, для стереозвука — это 2, а для квадрозвука — 4.
Кодирование и обработка графической информации
Новые аудиокурсы повышения квалификации для педагогов
Слушайте учебный материал в удобное для Вас время в любом месте
откроется в новом окне
Выдаем Удостоверение установленного образца:
«IQ и EQ как основа успешного обучения»
Описание презентации по отдельным слайдам:
Урок по информатике 9 класс Глава: Кодирование и обработка графической и мультимедийной информации Тема: Кодирование и обработка графической информации
Графическая информация Аналоговая форма Дискретная форма Пространственная дискретизация сканирование
ПИКСЕЛЬ – это минимальный участок изображения, для которого независимым образом можно задать цвет. РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ растрового изображения определяется количеством точек как по горизонтали, так и по вертикали на единицу длины изображения. Чем меньше размер точки, тем больше разрешающая способность. Величина РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ выражается в dpi (количество точек в полоске изображения длиной 2,54 см (дюйм))
Глубина цвета Растровое изображение представляет собой совокупность точек (пикселей) разных цветов. Для черно-белого изображения информационный объем одной точки равен одному биту (либо черная, либо белая – либо 1, либо 0). Для четырех цветного – 2 бита. Для 8 цветов необходимо – 3 бита. Для 16 цветов – 4 бита. Для 256 цветов – 8 бит (1 байт) и т.д. Количество цветов в палитре (N) и количество информации, необходимое для кодирования каждой точки (I), связаны между собой и могут быть вычислены по формуле: N=2I
Количество информации, которое используется для кодирования цвета одной точки изображения, называется ГЛУБИНОЙ ЦВЕТА
Наиболее распространенными глубинами цвета являются 4,8,16, и 24 бита на точку. Зная глубину цвета, можно по формуле вычислить количество цветов в палитре.
Расчет объема видеопамяти Информационный объем требуемой видеопамяти можно рассчитать по формуле: Iпамяти=I * X * Y где Iпамяти – информационный объем видеопамяти в битах; X * Y – количество точек изображения (по горизонтали и по вертикали); I – глубина цвета в битах на точку. ПРИМЕР. Необходимый объем видеопамяти для графического режима с пространственным разрешением 800 х 600 точек и глубиной цвета 24 бита равен: Iпамяти= 24 * 600 * 800 = 11 520 000 бит = = 1 440 000 байт = 1 406, 25 Кбайт = 1, 37 Мбайт
Палитры цветов в системах цветопередачи RGB, CMYK, HSB
Палитра цветов в системе цветопередачи RGB С экрана монитора человек воспринимает цвет как сумму излучения трех базовых цветов (red, green, blue). Цвет из палитры можно определить с помощью формулы: Цвет = R + G + B, Где R, G, B принимают значения от 0 до max Так при глубине цвета в 24 бита на кодирование каждого из базовых цветов выделяется по 8 битов, тогда для каждого из цветов возможны N=28=256 уровней интенсивности.
Формирование цветов в системе RGB В системе RGB палитра цветов формируется путем сложения красного, зеленого и синего цветов Цвет Формирование цвета Черный = 0+0+0 Белый =Rmax+Gmax+Bmax Красный = Rmax+0+0 Зеленый = Gmax+0+0 Синий = Bmax+0+0 Голубой =0+ Gmax+Bmax Пурпурный = Rmax+0+Bmax Желтый = Rmax+Gmax+0
Палитра цветов в системе цветопередачи HSB Система цветопередачи HSB использует в качестве базовых параметров Оттенок цвета, Насыщенность, Яркость В системе цветопередачи HSB палитра цветов формируется путем установки значений оттенка цвета, насыщенности и яркости.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Применение облачных сервисов в педагогической практике учителя (практический курс)
Курс профессиональной переподготовки
Информатика: теория и методика преподавания в образовательной организации
Данная презентация может использоваться на уроке информатики и ИКТ «Кодирование графической информации», в 9 классе.
Цель: познакомить учащихся с понятиями пространственной дискретизации, сформулировать принцип хранения в памяти компьютера изображения, научить вычислять информационный объем графического изображения.
Номер материала: ДБ-841350
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
ЕГЭ в 2022 году может пройти в допандемийном формате
Время чтения: 1 минута
К репетиторам обращались 49% россиян
Время чтения: 2 минуты
В московских школах, где будут участки для выборов, организуют выездные занятия в музеях
Время чтения: 1 минута
Что влияет на выбор школьниками инженерных специальностей
Время чтения: 1 минута
Минобрнауки предлагает дифференцированный подход к аккредитации вузов
Время чтения: 1 минута
В пяти регионах России протестируют новую систему оплаты труда педагогов
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.













