квантовая физика на практике
Квантовая физика для чайников. Объективная реальность что это?
Квантовая физика для чайников. Объективная реальность что это? Просто о сложном! Условность происходящего. История квантовой механики. Декогеренция.
Здравствуйте, уважаемые читатели!
Для лучшего понимания теории переговоров мы с Вами попытаемся ответить на сложные вопросы о природе объективной реальности. Эта статья является продолжением цепочки публикаций, посвященных так называемой объективной реальности.
Блок 1. Квантовая физика. Условность происходящего.
Условно объективная реальность представлена для воспринимающего субъекта «ЗДЕСЬ И СЕЙЧАС». Объективная реальность в том виде, как ее понимает среднестатистический человек, далекий от квантовой физики, условна потому, что не доказана до настоящего времени ее безусловность. Так, эксперименты в квантовой физике перевернули представления многих сторонников безусловной объективности реальности. Как осуществляется выбор системы при наличии наблюдателя можно увидеть в экспериментах, а каковы причины, заставляющие систему менять свое состояние в зависимости от позиции наблюдателя – это остается без ответа, только гипотезы.
Необходимость углубляться в сложные вопросы квантовой теории продиктована еще одной сложнейшей проблемой современности, взаимосвязь мозга и сознания человека. Возможно кросс-подход окажется более правильным и поможет найти ответы.
Существуют интересные вопросы, которые Вы наверняка уже слышали:
– Собака виляет своим хвостом или хвост виляет собакой?
– Улыбка порождает радость или радость порождает улыбку?
– Мозг порождает сознание или сознание порождает мозг?
– Что первично: материя или дух?
На некоторые из них можно вполне определенно ответить уже сейчас, а на другие ответа нет, поскольку отсутствует парадигма, всеобъемлющая концепция, в рамках которой возможны ответы, не противоречащие обратной связи условной объективной реальности.
Хотя, для многих из нас представляется типичным ответ: конечно, собака виляет хвостом, а мозг порождает сознание. Улыбаемся тогда, когда уже есть радость. При этом человек, ответивший подобным образом, будет находится в полной уверенности, потому что так подсказывает ему пресловутый здравый смысл и/или интуиция. Подчас, это самые страшные враги всего нового, что лежит за плоскостью нашего сознательного фокуса. К тому же, очевидные ответы весьма часто вовсе не очевидны. И в тоже время они наши «большие друзья», позволяющие эволюционно адаптироваться к текущей реальности.
Некий наблюдатель сможет представить иные доводы. Например, когда у индивида удаляют часть мозга, в особенности корковые структуры, то сознание, понимаемое как осознание, исчезает как «луч солнца в черной дыре». А когда человек спит или находится под наркозом, т.е. пребывает не в сознании, то его мозг функционирует без нарушений. Анатомически мозг действительно на месте, а вот что происходит с ним в этот момент, какова его электрическая активность? И почему сознательная целевая когнитивная деятельность вызывает очаги возбуждения по всему мозгу, наблюдается гамма – активность, бета-активность, в то время, как мозг человека в состоянии глубокой медитации показывает не только другую картину на электроэнцефалограмме, например, тета – ритмы или дельта – ритмы, а и иное распределение по масштабу задействованных нейрональных групп.
Вряд ли можно пока объяснить механизм сознания через функционирование его материального субстрата – мозга. Накопленный научный материал позволяет проводить достоверные параллели между нейрофизиологией и психическими процессами, при этом сознание как осознание остается вне общего понимания. В настоящее время ученые по всему миру работают над созданием единой теории, объединяющей сознание и мозг. Возникают гипотезы, которые более или менее красиво пытаются устранить подобную научную дихотомию, при этом потребуется время, чтобы научное сообщество смогло консолидировано принять какую – либо, опираясь на эмпирическую доказательную базу, сложность получения которой является в том числе тормозом на пути согласия.
ВИДЕО “Переговоры с закупщиком. Как договориться со сложным клиентом?!”
Блок 2. Квантовая физика. История квантовой механики.
2.1. Нильс Бор и Вернер Гейзенберг.
В 1920 году Нильс Бор и Вернер Гейзенберг сформулировали ключевые положения квантовой механики. Данная интерпретационная версия на протяжении многих лет была самой популярной в мире. Ядром ее является волновая функция – математическая функция. В ней присутствует информация о всех возможных состояниях квантовой системы, в которых она может находиться. Суть ее в том, что узнать состояние системы наверняка возможно только через наблюдение. Именно наблюдение квантовой системы переводит ее из многих состояний в одно, т.е. она становится традиционной. Волновая функция системы позволяла произвести математические расчеты, которые определяли вероятность обнаружения системы в каком-либо состоянии.
2.2. Альберт Эйнштейн.
Данная теория далеко не всеми учеными разделялась. Альберт Эйнштейн критически отзывался о ней. Его знаменитое выражение: «Бог не играет в кости со Вселенной» отражало его позицию. Менее известно выражение создателя квантовой механики Нильса Бора: «Альберт, перестань же ты, наконец, указывать богу, что ему делать!». Так, известен ЭПР-парадокс Эйнштейна-Подольского-Розена. Данный парадокс был сформулирован в 1935 году. Он построен на мысленном эксперименте. Эйнштейн играл роль оппонента для создателей квантовой механики и тем самым внес вклад в ее развитие. Ирония судьбы в том, что Эйнштейн получил Нобелевскую премию по физике не за открытие теории относительности, а за раскрытие феномена фотоэлектрического эффекта, в основе которого были квантовые представления, которые впоследствии стали настолько революционными в науке.
2.3. Эрвин Шредингер.
Эрвин Шредингер с целью продемонстрировать парадоксы, существующие в копенгагенской теории, предложил мысленный эксперимент. Этот знаменитый на весь мир эксперимент называется «парадокс кота Шредингера». Этот мысленный эксперимент показывает насколько существенная граница проходит между привычным классическим миром, к которому привык человек и квантовым миром, квантовой реальностью.
Итак, берем ящик, помещаем внутрь него кота, нестабильный (распадающийся) атом, ампулу с ядом, автоматическое устройство, которое разрушит ампулу под влиянием нестабильного атома, когда он распадется. В процессе нахождения кота в ящике атом распадается, при этом наблюдатель не знает, жив кот внутри ящика или нет, т.к. доступа нет. Наблюдатель знает время периода полураспада, а время полного распада не известно и при этом нет никакой возможности понять, распался атом полностью или нет, пока ящик закрыт. У наблюдателя нет ответа на вопрос: жив кот или нет в тот или иной промежуток времени. Первоначально атом не является полностью распавшимся, а впоследствии атом переходит в состояние суперпозиции.
Суперпозиция является суммой двух и более векторов состояний в квантовой механике, каждый из которых в свою очередь – это одно из состояний. Первое состояние – нераспавшийся атом и кот жив, второе состояние – вектор – распавшийся атом – кот мертв. Первый вектор уменьшается во времени, а второй увеличивается. Кот пребывает в состоянии суперпозиции, т.е. одновременно мертв и одновременно жив. Когда наблюдатель откроет ящик, то, конечно кот не будет одновременно жив и мертв, а будет находиться в одном из состояний. Если атом распадется, ампула будет разрушена, кот умрет, а если атом не распадется, ампула останется сохранной, кот будет живым. В этом и состоит парадокс. Пока наблюдатель не осознал реальность, она находится в суперпозиции, а когда осознал – реальность становится одним из векторных состояний. До момента осознания квантовый мир состоит из двух параллельных миров, альтернативных друг для друга.
Заказывайте мой тренинг “Переговоры – Партнерство”
2.4. Юджин Вигнер.
Еще один мыслительный парадокс, описанный Вигнером, так и называется «Парадокс друга Вигнера». Ученый предложил ввести еще один элемент – передача информации от друга экспериментатора. Друг проводит эксперимент, в результате которого видит вспышку света. До того момента, пока Вигнер не знает результатов эксперимента, он интерпретирует состояние системы как суперпозицию. После того, как друг сообщил Вигнеру информацию по зарегистрированной вспышке света, система для Вигнера становится классической. При этом сам Вигнер не был непосредственным участником эксперимента. Его сознание выбрало данную альтернативу, которая была заранее выбрана как альтернатива его другом. Модель мира Вигнера оказалась смоделированной им в результате его сознательного выбора модели мира его друга. Альтернатива в альтернативе, модель в модели.
2.5. Джон фон Нейман.
В копенгагенской интерпретации предполагалось, что на каждом временном отрезке, когда принимается решение, происходит событие, человек случайным образом выбирает тот или иной альтернативный мир, который он в состоянии фиксировать своими сенсорными системами, поэтому человек и не в состоянии сенсорно ощущать и воспринимать другие миры. Он всегда имеет дело с одним классическим миром. Такое представление является коллапсом волновой функции или редукцией состояния – выбор одного вектора состояния и исчезновение всех остальных векторов. Математически этот состояние было описано фон Нейманом. Это и позволяло на практике применять квантовую механику для решения квантовых механических задач. В этом ее относительная простота и ценность. Остальные миры просто перестают существовать. Это изменение происходит одномоментно и не имеет обратной силы, т.е. не может обратиться в исходное состояние. Соответственно человек, ограниченный одним классическим миром, фактически оказывается заложником и живет в иллюзии.
Блок 3. Квантовая физика. Декогеренция.
Впоследствии появилась теория декогеренции, которая нивелировала редукцию. Измерение состояния системы происходит в результате взаимодействия измерительного прибора и измеряемого объекта – другой системы. Измерительный прибор, в том числе система, которая окружает измеряемый объект являются измерительной системой. Во время взаимодействия измерительной системы и измеряемого объекта происходит запутывание состояния двух систем, т.е. появляется квантовая корреляция. При этом, состояние измеряемой системы преобразуется, она переходит из «чистого состояния» в «смешанное состояние». Вместо суперпозиции, где суммируются векторы, возникает смешение векторов, т.е. они никуда не исчезают, как это было представлено в копенгагенской интерпретации. Вектора остаются и происходит их перемешивание. Сами вектора состояний претерпевают изменения с момента чистого состояния измеряемой системы как суперпозиции к моменту взаимодействия с измерительной системой. Измеряемая система подвергается декогеренции, т.е. измеряемая система теряет квантовую когерентность. В 80-ых годах 20 века – это явление стало популярным и обсуждаемым в академических кругах. С 90 – ых годов обстоятельно описывается в научной литературе. В результате квантовая механика лишилась редукции состояний.
Декогеренция является проблемой, из-за которой срок разработки и запуска квантового компьютера раз за разом отодвигался. Квантовые исчисления неизбежно приводят к декогеренции, происходит смешение кубитов. Идея создания квантового компьютера была предложена Ричардом Фейнманом в далеком 1981 году. Но только в последние два года миру были анонсированы квантовые компьютеры, мощность которых на текущий момент уже составляет 50 кубитов и даже 72 кубита (март 2018 г – Google). Однако это не означает, что теперь «БОЛЬШОЙ БРАТ» (Джордж Оруэлл «1984») или «ОКО САУРОНА» (Дж. Р. Р. Толкин) сможет за секунды определить, где находится любой живущий человек на планете. Связано это с квантовым ошибками, шумом, в результате чего возникают неточности в расчетах. И пока эта проблема не решена. А значит МЫ (человечество) все еще находимся на неопределённом расстоянии до настоящего прорыва в области информационных технологий.
На сегодня это все! Продолжение про условно объективный мир и виртуальную реальность впереди!
УМНЫЕ КНИГИ по современной поведенческой психологии, теории принятия решений, когнитивным иллюзиям, мотивации, лидерству, саморазвитию, ошибкам в мышлении Вы можете БЕСПЛАТНО скачать с моего сайта здесь: https://yakimovvlad.ru/knigi-psixologiya
Друзья, ставьте лайки, Ваша поддержка – это мощная штука, сохраняет мотивацию распространять знания бесплатно! И пишите комментарии! Это сложная тема и Ваше мнение заслуженно будет вкладом в образование людей! Очень многие читают комментарии и им это нравится, потому что разность мнений создают плодородную почву для ответов на вопросы о нашем замечательном мире!
Пожалуйста делитесь в социальных сетях этой статьей, помогите мне распространять БЕСПЛАТНЫЕ знания БЕСПЛАТНО, ведь кому-то это может помочь в жизни справиться со сложной ситуацией! Спасибо, Вам!
Квантовая механика для всех, даром, и пусть никто не уйдёт обиженным: часть первая
Здравствуйте! Я хотел бы представить вашему вниманию отличное введение в квантовую механику, написанное Элиезером Юдковским; быть может, он известен вам по своему сайту lesswrong.com, посвящённому рационализму, предрассудкам, когнитивным парадоксам и ещё многим интересным вещам.
читать вторую часть →
Введение во введение
Предупреждаю сразу: этот цикл статей заметно отличается от традиционного введения в квантовую механику.
Во-первых, я не буду цитировать Ричарда Фейнмана, однажды заявившего, что «это нормально — не понимать квантовую механику, потому что никто её не понимает». Когда-то это было так, но времена меняются.
Я не скажу: «Квантовую механику невозможно понять, к ней просто нужно привыкнуть». (Эту цитату приписывают Джону фон Нейману; он жил в те дремучие времена, когда никто и в самом деле не понимал квантовую механику.)
Нельзя заканчивать объяснение словами «Если что-то непонятно, так и должно быть». Нет, так не должно быть. Может, проблема в вас. Может — в вашем учителе. В любом случае, её надо решать, а не сидеть сложа руки и успокаивать себя тем, что все остальные тоже ничего не понимают.
Я не буду говорить, что квантовая механика — это нечто странное, запутанное или недоступное для человеческого понимания. Да, она контринтуитивна — но это беда исключительно нашей интуиции. Квантовая механика возникла задолго до Солнца, планеты Земля или человеческой цивилизации. Она не собирается меняться ради вас. Вообще, не существует обескураживающих фактов, есть только теории, обескураженные фактами; а если теория не совпадает с практикой, это не делает ей чести.
Всегда стоит рассматривать реальность как совершенно обыденную вещь. С начала времён во Вселенной не случилось ничего необычного.
Наша цель — научиться чувствовать себя как дома в этом квантовом мире. Потому что мы и так дома.
На протяжении всего этого цикла я буду говорить о квантовой механике как о самой обычной теории; а там, где интуитивное представление о мире не совпадает с ней, я буду высмеивать интуицию за несоответствие реальности.
Во-вторых, я не собираюсь следовать традиционному порядку изучения квантовой механики, копирующему порядок, в котором её открывали.
Обычно всё начинается с рассказа о том, что материя иногда ведёт себя как кучка маленьких бильярдных шаров, сталкивающихся между собой, а иногда — как волны на поверхности бассейна. Это сопровождается несколькими примерами, иллюстирующими оба взгляда на материю.
Раньше, когда всё это только зарождалось и никто не имел ни малейшего понятия о математических основах физики, учёные всерьёз считали, что всё состоит из атомов, ведущих себя примерно как бильярдные шары. А потом они стали считать, что всё состоит из волн. А потом они опять вернулись к бильярдным шарам. Всё это привело к тому, что учёные окончательно запутались, и только через несколько десятилетий — к концу девятнадцатого века — им удалось расставить всё по своим местам.
Если применить этот исторический достоверный подход к обучению современных студентов (как сейчас и поступают), с ними закономерно случится то же, что случилось с ранними учёными, а именно — они впадут в полное и абсолютное замешательство. Рассказывать студентам, изучающим физику, о корпускулярно-волновом дуализме, это то же самое, что начинать курс химии лекцией о четырёх стихиях.
Электрон не похож ни на бильярдный шар, ни на гребень океанской волны. Электрон — это совершенно другой объект с математической точки зрения, и он остаётся таким при любых обстоятельствах. А если вы будете упорствовать в своём стремлении считать его и тем, и тем, как вам удобнее, предупреждаю: за двумя зайцами погонишься — ни одного не поймаешь.
Это не единственная причина, по которой исторический порядок — не лучший выбор. Давайте проследим за гипотетическим процессом с самого начала: люди замечают, что они окружены другими животными — внутри животных, оказывается, есть органы — а органы, если присмотреться внимательнее, состоят из тканей — под микроскопом видно, что ткани состоят из клеток — клетки состоят из протеинов и прочих химических соединений — химические соединения состоят из атомов — атомы состоят из протонов, нейтронов и электронов — а последние гораздо проще и понятнее животных, с которых всё началось, но были открыты на десятки тысяч лет позже.
Физику не начинают проходить с биологии. Тогда почему её нужно начинать с обсуждения лабораторных экспериментов и их результатов, которые даже в случае простейших опытов являются следствием множества сложных и запутанных процессов?
С одной стороны, я могу понять, почему во главу угла ставится эксперимент. Мы же о физике говорим, в конце концов.
С другой стороны, давать студентам в руки сложный математический аппарат только для того, чтобы они могли проанализировать простой опыт — это уже чересчур. Программистов, например, сначала учат складывать две переменные, а только потом — писать многопоточные приложения; и плевать на то, что вторые «ближе к реальной жизни».
Классическая механика не следует явным образом из квантовой механики. Более того, классическая механика находится на гораздо более высоком уровне. Сравните атомы и молекулы с кварками: миллионы известных науке химических веществ, сотня химических элементов, и всего шесть кварков. Сначала лучше понять простое, а только потом переходить к сложному.
Наконец, я буду рассматривать квантовую механику со строго реалистической позиции — наш мир является квантовым, наши уравнения описывают территорию, а не её карту, и привычный нам мир неявным образом существует в квантовом мире. Если среди моих читателей есть антиреалисты — пожалуйста, придержите свои комментарии. Квантовую механику гораздо труднее понять и представить, если сомневаешься в её справедливости. Я поговорю об этом подробнее в одной из следующих статей.
Я думаю, что той точки зрения, которую я буду излагать в этом введении, придерживается большинство физиков-теоретиков. Но вы всё же должны знать, что это не единственная возможная точка зрения, и немалая доля учёных сомневается в верности реалистической позиции. Хоть я и не собираюсь уделять внимание каким-либо другим теориям прямо сейчас, я чувствую себя обязанным упомянуть о том, что они есть.
Подводя итог, моя цель — научить вас думать как коренной житель квантового мира, а не как турист поневоле.
Покрепче вцепитесь в реальность. Мы начинаем.
Конфигурации и амплитуды
Посмотрите на рис. 1. В точке A находится полупосеребрённое зеркало, а в точках B и C — два детектора фотонов.
Этот простой эксперимент в своё время заставил учёных поломать головы. Дело в том, что в половине случаев фотон, выпущенный в сторону зеркала, регистрировался первым детектором, а в половине — на вторым. И учёные — внимание, приготовьтесь смеяться — предполагали, что зеркало то пропускало фотон, то отражало его.
Ха-ха-ха, представьте себе зеркало, которое может само выбирать, пропускать ему фотон или не пропускать! Если вы и можете это представить, то все равно не делайте этого — а не то вы запутаетесь так же, как и те учёные. Зеркало ведёт себя абсолютно одинаково в обоих случаях.
Если бы мы попробовали написать компьютерную программу, симулирующую этот эксперимент (а не просто предсказывающую результат), она бы выглядела примерно так…
В начале программы мы объявляем переменную, хранящую в себе определённый математический объект — конфигурацию. Она представляет некое описание состояния мира — в данном случае, «один фотон летит в точку А».
Введём ещё две конфигурации: «фотон летит из A в точку B» и «фотон летит из A в точку C». Мы пока не знаем амплитуды этих конфигураций; им будут присвоены значения в ходе выполнения программы.
В принципе, можно считать «первый детектор регистрирует фотон» и «второй детектор регистрирует фотон» отдельными конфигурациями, но это ничего не меняет; их амплитуды будут равны амплитудам двух предыдущих конфигураций соответственно. (На самом деле их ещё надо домножить на множитель, равный расстоянию от A до детекторов, но мы просто предположим, что все расстояния в нашем эксперименте являются множителями единицы.)
Итак, вот конечное состояние программы:
Разумеется, сколько бы раз мы ни запускали программу, конечное состояние останется таким же.
Теперь, по довольно сложным причинам, в которые я пока не буду вдаваться, не существует простого способа измерить амплитуду конфигурации. Состояние программы скрыто от нас.
Хоть мы и не можем измерить амплитуду непосредственно, кое-что у нас есть — а именно, волшебная измерительная штуковина, которая может сообщить нам квадрат модуля амплитуды конфигурации. Другими словами, для амплитуды (a + bi) штуковина ответит числом (a² + b²).
Точнее было бы сказать, что волшебная штуковина находит всего лишь отношение квадратов модулей друг к другу. Но даже этой информации оказывается достаточно, чтобы понять, что происходит внутри программы и по каким законам она работает.
С помощью штуковины мы можем легко узнать, что квадраты модулей конфигураций «сработал первый детектор» и «сработал второй детектор» равны. А проведя некоторые более сложные эксперименты, мы сможем также узнать отношение самих амплитуд — i к 1.
Кстати, а что это за волшебная измерительная штуковина такая?
Ну, когда такие эксперименты проводят в реальной жизни, в качестве волшебной штуковины служит то, что эксперимент проводят пару тысяч раз и просто считают, сколько раз фотон оказался в первом детекторе, а сколько — во втором. Отношение этих значений и будет отношением квадратов модулей амплитуд. Почему это будет так — вопрос другой, гораздо более сложный. А пока можно пользоваться штуковиной и без понимания того, как да почему она работает. Всему своё время.
Вы можете спросить: «А зачем вообще нужна квантовая теория, если её предсказания совпадают с предсказаниями „бильярдной” теории?» Есть две причины. Во-первых, реальность, что бы вы там ни думали, всё-таки подчиняется квантовым законам — амплитуды, комплексные числа и всё такое. А во-вторых, «бильярдная» теория не работает для любого мало-мальски сложного эксперимента. Хотите пример? Пожалуйста.
На рис. 2 вы можете видеть два зеркала в точках B и C, и два полу-зеркала в точках A и D. Позже я объясню, почему отрезок DE проведён пунктиром; на расчётах это никак не скажется.
Давайте применим правила, которые мы уже знаем.
В начале у нас есть конфигурация «фотон летит в A», её амплитуда — (-1 + 0i).
Считаем амплитуды конфигураций «фотон летит из A в B» и «фотон летит из A в C»:
Интуитивно ясно, что обычное зеркало ведёт себя как половина полу-зеркала: всегда отражает фотон, всегда умножает амплитуду на i. Итак:
Важно понять, что «из B в D» и «из C в D» — это две разные конфигурации. Нельзя просто написать «фотон летит в D», потому что от угла, под которым этот фотон приходит в D, зависит то, что с ним случится дальше.
Отношение квадратов модулей амплитуд — 0 к 4; из расчётов следует, что первый детектор вообще не будет срабатывать! Поэтому-то отрезок DE и был проведён пунктиром на рис. 2.
Если бы полу-зеркала отражали или пропускали фотон случайным образом, оба детектора реагировали бы примерно с одинаковой частотой. Но это не совпадает с результатами экспериментов. Вот и всё.
Вы могли бы возразить: «А вот и не всё! Предположим, например, что когда зеркало отражает фотон, с ним происходит что-то такое, что второй раз он уже не отразится? И, наоборот, когда зеркало пропускает фотон, в следующий раз ему придётся отразиться.»
Во-первых, бритва Оккама. Не стоит выдумывать сложное объяснение, если уже существует простое (если, конечно, считать квантовую механику простой…) А во-вторых, я могу придумать другой опыт, который опровергнет и эту альтернативную теорию.
Поместим маленький непрозрачный объект между B и D, чтобы амплитуда конфигурации «фотон летит из B в D» всегда равнялась нулю.
Это невозможно объяснить, если считать, что фотон — это маленький бильярдный шарик, который отражается от зеркал.
Дело в том, что об амплитуде нельзя думать, как о вероятности. В теории вероятностей, если событие X может произойти или не произойти, то вероятность события Z равна P(Z|X)P(X) + P(Z|¬X)P(¬X), где все вероятности положительны. Если вы знаете, что вероятность Z при условии, что X случилось, равна 0.5, а вероятность X — 0.3, то полная вероятность Z по меньшей мере 0.15, независимо от того, что произойдёт, если X не случится. Не бывает отрицательных вероятностей. Возможные и невозможные события не могут аннулировать друг друга. А амплитуды — могут.
Вот пример неправильного мышления: «Фотон летит в B или в C, но он мог полететь по-другому, и это влияет на вероятность того, что он полетит в E…»
События, которые не случились, не имеют никакого влияния на мир. Единственное, что может повлиять на мир — это наше воображение. «О боже, эта машина чуть не сбила меня», думаете вы, и решаете уйти в монастырь, чтобы больше никогда не встречаться с опасными машинами. Но реально по-прежнему не само событие, а лишь ваше воображение, содержащееся в вашем мозгу — который можно из вас достать, пощупать и положить назад, чтобы убедиться, что он вполне реален.
Реально всё, что влияет на мир. (Если вы полагаете, что это не так, попробуйте дать определение слову «реальный».) Конфигурации и амплитуды непосредственно влияют на мир, так что они тоже реальны. Сказать, что конфигурация — это «то, что могло случиться», так же странно, как сказать, что стул — это «то, что могло случиться».
А что это тогда — конфигурация?
На самом деле всё немного сложнее, чем вам могло показаться после прочтения этой статьи.
Каждая конфигурация описывает все частицы во Вселенной. Амплитуда — это непрерывное распределение по всему пространству конфигураций, а не дискретное, как мы рассматривали сегодня. И в самом деле, фотоны же не телепортируются из одного места в другое мгновенно, а каждое различное состояние мира описывается новой конфигурацией. В конце концов мы и до этого доберёмся.
Если вы ничего не поняли из этого абзаца, не беспокойтесь, я всё объясню. Потом.