принцип кодирования графической информации заключается в графической
Информатика. 10 класс
Конспект урока
Информатика, 10 класс. Урок № 17.
Тема — Кодирование графической и звуковой информации
Большую часть информации человек получает с помощью зрения и слуха. Важность этих органов чувств обусловлена развитием человека как биологического вида, поэтому человеческий мозг с большой скоростью способен обрабатывать огромное количество графической и звуковой информации.
С появлением компьютеров возникла огромная потребность научить их обрабатывать такую информацию. Как же такую информацию может обработать компьютер?
Итак, кодирование графической информации осуществляется двумя различными способами: векторным и растровым
Программы, работающие с векторной графикой, хранят информацию об объектах, составляющих изображение в виде графических примитивов: прямых линий, дуг окружностей, прямоугольников, закрасок и т.д.
Достоинства векторной графики:
— Преобразования без искажений.
— Маленький графический файл.
— Рисовать быстро и просто.
— Независимое редактирование частей рисунка.
— Высокая точность прорисовки.
— Редактор быстро выполняет операции.
Недостатки векторной графики:
— Векторные изображения выглядят искусственно.
— Ограниченность в живописных средствах.
Программы растровой графики работают с точками экрана (пикселями). Это называется пространственной дискретизацией.
КОДИРОВАНИЕ РАСТРОВОЙ ГРАФИКИ
Давайте более подробно рассмотрим растровое кодирование информации.
Компьютер запоминает цвет каждой точки, а пользователь из таких точек собирает рисунок.
При этом зная количество пикселей по вертикале и горизонтали, мы сможем найти — разрешающую способность изображения.
Разрешающая способность находится по формуле:
где n, m — количество пикселей в изображении по вертикали и горизонтали.
В процессе дискретизации каждый пиксель может принимать различные цвета из палитры цветов. При этом зная количество цветов, которые можно использовать в палитре и воспользовавшись формулой Хартли, мы сможем найти количество информации, которое используется для кодирования цвета точки, что мы будем называть глубиной цвета.
где N — количество цветов в палитре;
Таким образом, чтобы найти вес изображения достаточно перемножить разрешающую способность изображения на глубину цвета: L=P*i.
Каким именно образом возможно закодировать пиксель? Для этого используются кодировочные палитры.
КОДИРОВОЧНАЯ ПАЛИТРА RGB
Когда художник рисует картину, цвета он выбирает по своему вкусу. Но цвет в компьютере надо стандартизировать, чтобы его можно было распознать. Поэтому надо определить, что такое каждый цвет.
В экспериментах по производству цветных стекол М. В. Ломоносов показал, что получить любой цвет возможно, используя три различных цвета.
Этот факт был обобщен Германом Грассманом в виде законов аддитивного синтеза цвета.
Давайте рассмотрим два из этих законов:
— Закон трехмерности. С помощью трех независимых цветов можно, смешивая их в однозначно определенной пропорции, выразить любой цвет.
— Закон непрерывности. При непрерывном изменении пропорции, в которой взяты компоненты цветовой смеси, получаемый цвет также меняется непрерывно.
Из биологии вы знаете, что рецепторы человеческого глаза делятся на две группы: палочки и колбочки. Палочки более чувствительны к интенсивности поступаемого света, а колбочки — к длине волны.
Если посмотреть, как распределяется количество колбочек по тому, на какую длину волны они «настроены», то количество колбочек «настроенных» на синий, красный и зеленый цвета окажется больше.
Поэтому такие цвета были взяты основными для построения цветовой модели, которая получила название RGB (Red, Green, Blue). То есть задавая количество любого из этих трех цветов, можно получить любой другой. Для кодирования каждого цвета было выделено 8 бит (режим True-Color). Таким образом, количество каждого цвета может изменяться от 0 до 255, часто это количество выражается в шестнадцатеричной системе счисления (от 0 до FF).
Так как описание цвета происходит определением трех величин, то это наводит на мысль считать их координатами точки в пространстве. Получается, что координаты цветов заполняют куб.
При этом яркость цвета определяется тем насколько близка к максимальному значению хотя бы одна координата из трех.
КОДИРОВАНИЕ ЗВУКОВОЙ ИНФОРМАЦИИ
Давайте перейдем к кодированию звуковой информации.
Из курса физики вам всем известно, что звук — это непрерывная волна с изменяющейся амплитудой и частотой.
Для того, чтобы компьютер мог обрабатывать непрерывный звуковой сигнал, он должен быть дискретизирован, т. е. превращен в последовательность электрических импульсов (двоичных нулей и единиц).
Для этого звуковая волна разбивается на отдельные временные участки.
Гладкая кривая заменяется последовательностью «ступенек». Каждой «ступеньке» присваивается значение громкости звука. Чем больше количество уровней громкости, тем больше количество информации будет нести значение каждого уровня и более качественным будет звучание. Причем, чем больше будет количество измерений уровня звукового сигнала в единицу времени, тем качественнее будет звучание. Эта характеристика называется частотой дискретизации Данная характеристика измеряется в Гц.
При этом на каждое измерение выделяется одинаковое количество бит. Такая характеристика называется — глубина кодирования.
Таким образом, чтобы подсчитать вес звуковой волны достаточно перемножить частоту дискретизации, глубины кодирования и времени звучания такого звука. При этом, рассматривая современное звучание, количество звуковых волн может быть различное, например, для стереозвука — это 2, а для квадрозвука — 4.
Кодирование графической информации
Под графической информацией можно понимать рисунок, чертеж, фотографию, картинку в книге, изображения на экране телевизора или в кинозале и т. д. Рассмотрим принципы кодирования графической информации на примере изображения на экране телевизора. Это изображение состоит из горизонтальных линий — строк, каждая из которых в свою очередь состоит из элементарных мельчайших единиц изображения — точек, которые принято называть пикселями (picsel — PICture’S ELement — элемент картинки). Весь массив элементарных единиц изображения называют растром.
Степень четкости изображения зависит от количества строк на весь экран и количества точек в строке, которые представляютразрешающую способность экрана, или просто разрешение. Чем больше строк и точек, тем четче и лучше изображение.
Если мы посмотрим на показатели разрешения современных плазменных и жидкокристаллических телевизоров, то обнаружим, что наиболее распространенные разрешения – 640×480 (ЖК-телевизоры с соотношением сторон 4:3); 852×480 (плазменные панели с соотношением сторон 16:9), 1024×768 (ЖК и «плазма» как 4:3, так и 16:9); 1366×768 (HD Ready); 1920×1080 (Full HD) пикселей. Встречаются, но редко, и некоторые другие значения разрешения, например 800×600 или 1024×1024 пикселей.
Обозначение разрешения, например 640×480, означает, что используется 480 горизонтальных строк по 640 пикселей в каждой. Таким образом, изображение на экране представляет собой последовательность из 640·480=307200 пикселей.
Изображения могут быть монохромными и цветными.
Монохромное изображение состоит из любых двух контрастных цветов — черного и белого, зеленого и белого, коричневого и белого и т. д. Для простоты обсуждения будем считать, что один из цветов — черный, а второй — белый. Тогда каждый пиксель изображения может иметь либо черный, либо белый цвет. Поставив в соответствие черному цвету двоичный код «0», а белому — код «1» (либо наоборот), мы сможем закодировать в 1 бите состояние 1 пикселя монохромного изображения. Однако полученное таким образом изображение будет чрезмерно контрастным.
Общепринятым на сегодняшний день, дающим достаточно реалистичные монохромные изображения, считается кодирование состояния 1 пикселя с помощью 1 байта, которое позволяет передавать 256 различных оттенков серого цвета от полностью белого, до полностью черного. В этом случае для передачи всего растра из 640×480 пикселей потребуется 307200 байт.
Цветное изображение может формироваться на основе различных моделей. Наиболее распространенные цветовые модели:
· RGB чаще всего используется в информатике;
· CMYK — основная цветовая модель в полиграфии;
· в телевидении для стандарта PAL применяется цветовая модель YUV, для SÉCAM — модель YDbDr, а для NTSC — модель YIQ;
· эталонная модель XYZ основана на замерах характеристик человеческого глаза.
Модель RGB (от слов Red, Green, Blue — красный, зеленый, синий) наиболее точно подходит к принципам вывода изображения на экран монитора – три числа задают яркость свечения зерен красного, зеленого и синего люминофора в заданной точке экрана. Поэтому данная модель получила наиболее широкое распространение в области компьютерной графики, ориентированной на просмотр изображений на экране монитора.
Модель RGB опирается на то, что глаз человека воспринимает все цвета как сумму трех основных цветов — красного, зеленого и синего(рис.4.1). Так как цвет формируется в результате сложения трех цветов, эту модель часто называют аддитивной (суммирующей).
Например, для задания белого цвета необходимо указать для всех трех компонентов максимальные значения яркости, а для задания черного – полностью погасить все источники (например, точки люминофора), задающие цвет в нужной точке изображения, – указать для них нулевую яркость.
Если каждый из цветов кодировать с помощью 1 байта (яркость каждого компонента задается числами от 0 до 255), как это принято для реалистического монохромного изображения, появится возможность передавать по 256 оттенков каждого из основных цветов. А всего в этом случае обеспечивается передача 256 · 256 · 256 = 16 777 216 различных цветов, что достаточно близко к реальной чувствительности человеческого глаза. Таким образом, при данной схеме кодирования цвета на изображение 1 пикселя требуется 3 байта или 24 бита памяти. Этот способ представления цветной графики принято называть режимом True Color (true color — истинный цвет) или полноцветным режимом.
Существуют профессиональные устройства (например, сканеры), позволяющие получать изображения, в которых каждый пиксел описывается не тремя, а шестью (16 бит на каждую цветовую составляющую) или даже восемью байтами. Подобные режимы используются для наилучшей передачи оттенков и, что самое главное, яркости точек изображения. Это позволяет наиболее достоверно воспроизводить изображения таких сложных с технической точки зрения сюжетов, как, например, вечерние или рассветные пейзажи.
Рис. 4.1. RGB-цветовая модель, представленная в виде куба
Пример 4.7. В Win32 стандартный тип для представления цветов – COLORREF. Для определения цвета в RGB используется 4 байта в виде:
BB, GG, RR — значение интенсивности соответственно синей, зеленой и красной составляющих цвета. Максимальное их значение — 0xFF.
Тогда определить переменную типа COLORREF можно следующим образом:
b, g и r — интенсивность (в диапазоне от 0 до 255) соответственно синей, зеленой и красной составляющих определяемого цвета C. То есть ярко-красный цвет может быть определен как (255,0,0), ярко-фиолетовый — (255,0,255), черный — (0,0,0), а белый — (255,255,255).
Полноцветный режим требует много памяти. Поэтому памяти разрабатываются различные режимы и графические форматы, которые немного хуже передают цвет, но требуют гораздо меньше памяти. В частности, можно упомянуть режим High Color (high color — богатый цвет), в котором для передачи цвета 1 пикселя используется 16 бит, и, следовательно, можно передать 65 535 цветовых оттенков, а также индексный режим, который базируется на заранее созданной для данного рисунка таблице используемых в нем цветовых оттенков. Затем нужный цвет пикселя выбирается из этой таблицы с помощью номера — индекса, который занимает всего 1 байт памяти. При записи изображения в память компьютера, кроме цвета отдельных точек, необходимо фиксировать много дополнительной информации — размеры рисунка, разрешение, яркость точек и т. д. Конкретный способ кодирования всей требуемой при записи изображения в память компьютера информации образует графический формат. Форматы кодирования графической информации, основанные на передаче цвета каждого отдельного пикселя, из которого состоит изображение, относят к группе растровых, или BMP (Bit MaP — битовая карта), форматов [1].
Модель CMYK(Cyan, Magenta, Yellow, blacK) субтрактивная схема формирования цвета, используемая прежде всего в полиграфии для стандартной триадной печати. Схема CMYK (рис. 4.2), как правило, обладает сравнительно небольшим цветовым охватом [3].
Рис. 4.2. Схема субтрактивного синтеза в CMYK
По-русски эти цвета часто называют так: голубой, пурпурный, жёлтый. Цвет в такой схеме зависит не только от спектральных характеристик красителей и от способа их нанесения, но и их количества, характеристик бумаги и других факторов. Например, есть американский, европейский и японский стандарты для мелованной и немелованной бумаг.
Хотя теоретически черный цвет можно получать смешением в равной пропорции пурпурного, голубого и желтого, на практике смешение реальных пурпурного, голубого и желтого цветов дает скорее грязно-коричневый или грязно-серый цвет. Так как чистота и насыщенность черного цвета чрезвычайно важны в печатном процессе, в модель был введен ещё один цвет – черный.
Объяснение первых трех букв в аббревиатуре CMYK дано выше, а по поводу четвертой одна из версий утверждает, что K – сокращение от англ. blacK (если бы взяли B, то возникла бы путаница с моделью RGB, где B – это синий цвет). Согласно этой версии, при выводе полиграфических пленок на них одной буквой указывался цвет, которому они принадлежат. Согласно другому варианту, буква K появилась от сокращения англ. слова Key: в англоязычных странах термином key plate обозначается печатная форма для черной краски.
CMYK называют субтрактивной моделью, потому что эту модель применяют в основном в полиграфии при цветной печати, а бумага и прочие печатные материалы служат поверхностями, отражающими свет: удобнее считать, какое количество света (и цвета) отразилось от той или иной поверхности, нежели – сколько поглотилось. Таким образом, если вычесть из белого три первичных цвета, RGB, мы получим тройку дополнительных цветов CMY. «Субтрактивный» означает «вычитаемый» – мы вычитаем первичные цвета из белого.
Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию, Например, для получения темно-оранжевого цвета следует смешать 30 % голубой краски, 45 пурпурной, 80 желтой и 5 % черной краски. Это можно обозначить следующим образом: (30,45,80,5). Иногда пользуются таким обозначением: C30M45Y80K5.
Контрольные вопросы и задания
1. Что называется форматом данных?
2. Как в компьютерах кодируется числовая информация?
3. Как связан диапазона представления целого числа с форматом его хранения.
4. Есть ли различия в отображении положительных чисел в прямом, обратном и дополнительном кодах?
6. Как связаны точность и диапазон представления вещественного числа с разрядностью мантиссы?
7. Почему порядок при представлении вещественного числа называют смещенным?
8. Почему при представлении нормализованного вещественного числа не хранят первую цифру мантиссы?
9. Представьте число 34.256 в одинарном формате вещественного числа.
10. Как в компьютерах кодируется текстовая информация?
11. Для чего используются кодовые таблицы? Какие кодовые таблицы вам известны?
12. Чем отличаются базовая таблица ASCII от расширенной?
13. Какие преимущества дает представление текстовой информации в формате Юникод?
15. Сколько байт памяти необходимо, чтобы закодировать изображение на экране компьютерного монитора с разрешением 800×600 при 256 цветах?
16. Какие модели формирования цветных изображений вам известны?
17. Какие цвета считаются основными в моделях RGB и CMYK?
5. Основные понятия алгебры логики
Принцип кодирования графической информации заключается в графической
Под графической информацией подразумевают всю совокупность информации, которая нанесена на самые различные носители — бумагу, пленку, кальку, картон, холст, оргалит, стекло, стену и т. д. В определенной степени графической информацией можно считать и объективную реальность, на которую направлен объектив фотоаппарата или цифровой камеры.
Под видами компьютерной графики подразумевается способ хранения изображения на плоскости монитора.
Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Применение во время деловых совещаний демонстрационных слайдов, подготовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватывает такие несхожие области как видеоигры и полнометражные художественные фильмы.
История компьютерной графики
Возникла идея поручить графическую обработку самой машине. Первоначально программисты научились получать рисунки в режиме символьной печати. На бумажных листах с помощью символов (звездочек, точек, крестиков, букв) получались рисунки, напоминающие мозаику. Так печатались графики функций, изображения течений жидкостей и газов, электрических и магнитных полей. С помощью символьной печати программисты умудрялись получать даже художественные изображения (Рис. 1). В редком компьютерном центре стены не украшались распечатками с портретами Эйнштейна, репродукциями Джоконды и другой машинной живописью.
Рис. 1 Символьная печать.
Затем появились специальные устройства для графического вывода на бумагу — графопостроители (другое название — плоттеры). С помощью такого устройства на лист бумаги чернильным пером наносятся графические изображения: графики, диаграммы, технические чертежи и прочее. Для управления работо графопостроителей стали создавать специальное программное обеспечение.
Настоящая революция в компьютерной графике произошла с появлением графических дисплеев. На экране графического дисплея стало возможным получать рисунки, чертежи в таком же виде, как на бумаге с помощью карандашей, красок, чертежных инструментов Рисунок из памяти компьютера может быть выведен не только на экран, но и на бумагу с помощью принтера. Существуют принтеры цветной печати, дающие качество рисунков на уровне фотографии.
Представление графической информации в компьютере
Создавать и хранить графические объекты в компьютере можно двумя способами: как растровое или как векторное изображение. Для каждого типа изображения используется свой способ кодирования.
Растровое изображение представляет собой совокупность точек, используемых для его отображения на экране монитора.
Объём растрового изображения определяется как произведение количества точек и информационного объёма одной точки, который зависит от количества возможных цветов. Для черно-белого изображения информационный объём одной точки равен 1 биту, так как точка может быть либо чёрной, либо белой, что можно закодировать одной из двух цифр — 0 или 1.
Информационный объём растрового изображения (V) определяется как произведение числа входящих в изображение точек (N) на информационный объём одной точки (q), который зависит от количества возможных цветов, т. е. V=N ⋅ q.
При чёрно-белом изображении q = 1 бит (например, 1 — точка подсвечивается и 0 — точка не подсвечивается). Поэтому для хранения чёрно-белого (без оттенков) изображения размером 100×100 точек требуется 10000 бит.
Если между чёрным и белым цветами имеется ещё шесть оттенков серого (всего 8), то информационный объём точки равен 3 бита (log28 = 3).
Информационный объём такого изображения увеличивается в три раза: V = 30000бит.
Рассмотрим, сколько потребуется бит для отображения цветной точки: для 8 цветов необходимо 3 бита; для 16 цветов — 4 бита; для 256 цветов — 8 битов (1 байт).
Разные цвета и их оттенки получаются за счёт наличия или отсутствия трёх основных цветов (красного, синего, зеленого) и степени их яркости. Каждая точка на экране кодируется с помощью 4 битов.
Цветные изображения могут отображаться в различных режимах, соответственно изменяется и информационный объём точки (Рис. 4).
Описание цвета пикселя является кодом цвета.
Количество бит, отводимое на каждый пиксель для представления цвета, называют глубиной цвета (англ. color depth). От количества выделяемых бит зависит разнообразие палитры.
Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита.
Чем больше глубина цвета, тем больше объем графического файла.
Для хранения растрового изображения размером 32×32 пикселя отвели 512 байтов памяти.
Каково максимально возможное число цветов в палитре изображения?
Цвет на Web-страницах кодируется в виде RGB-кода в шестнадцатеричной системе: #RRGGBB, где RR, GGи BB — яркости красного, зеленого и синего, записанные в виде двух шестнадцатеричных цифр; это позволяет закодировать 256 значений от 0 (0016) до 255 (FF16) для каждой составляющей.
При обозначении цветов в HTML-документах вначале ставят знак номера #.
В HTML: #FF0000 —интенсивно красный цвет, #00FF00 — зелёный цвет, #0000FF — синий цвет. Отсутствие цветов (#000000) даёт чёрный цвет, а самое интенсивное сочетание всех трёх каналов (#FFFFFF) даёт белый цвет.
FF — наибольшая яркость цветовой компоненты, для получения различных оттенков одного и того же цвета изменяют яркость.
Чтобы получить светлый оттенок какого-то «чистого» цвета, нужно одинаково увеличить нулевые составляющие; например, чтобы получить светло-красный цвет, нужно сделать максимальной красную составляющую и, кроме этого, одинаково увеличить остальные — синюю и зелёную: #FF9999 (сравните с красным: #FF0000).
Чтобы получить тёмный оттенок чистого цвета, нужно одинаково уменьшить все составляющие, например, #660066 — это тёмно-фиолетовый цвет (сравните с фиолетовым #FF00FF).
Заметим, что если старший бит в коде (первая, третья или пятая цифра) находится в диапазоне от 0 до 3, то можно считать, что эта цветовая компонента отсутствует в цвете, то есть #0F0F0F — это чёрный цвет.
Также следует отметить, что равное или почти равное сочетание цветовых компонент обозначает серый цвет разной интенсивности.
Векторное изображение представляет собой совокупность графических примитивов. Каждый примитив состоит из элементарных отрезков кривых, параметры которых (координаты узловых точек, радиус кривизны и пр.) описываются математическими формулами.
Для каждой линии указываются её тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет, а замкнутые фигуры дополнительно характеризуются типом заливки.
Рассмотрим, например, такой графический примитив, как окружность радиуса r. Для её построения необходимо и достаточно следующих исходных данных:
— координаты центра окружности;
— значение радиуса r;
— цвет заполнения (если окружность не прозрачная);
— цвет и толщина контура (в случае наличия контура).
Информация о векторном рисунке кодируется обычным способом, как хранятся тексты, формулы, числа, т. е. хранится не графическое изображение, а только координаты и характеристики изображения его деталей. Поэтому для хранения векторных изображений требуется существенно меньше памяти, чем растровых изображений.
Кодирование графической информации
Графическую информацию можно представлять в двух формах: аналоговой и цифровой.
Живописное полотно, цвет которого изменяется непрерывно — это пример аналогового представления.
Изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета — это цифровое или еще именуют как дискретное представление.
Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в цифровую. Этот процесс называется «кодирование», поскольку каждому элементу назначается конкретное значение в форме двоичного кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества цветных фрагментов (метод мозаики).
Графическая информация в аналоговой форме представляется в виде рисунка, картинки, а также слайда на фотопленке и полученную по нему аналоговую фотографию.
Изображение кодируется в цифровую форму с использованием элементарных геометрических объектов, таких как точки, линии, сплайны и многоугольники или матрицы фиксированного размера, состоящей из точек (пикселей) со своими геометрическими параметрам.
Современная компьютерная графика
Научная графика. Это направление появилось самым первым. Назначение — визуализация (т. е. наглядное изображение) объектов научных исследований, графическая обработка результатов расчетов, проведение вычислительных экспериментов с наглядным представлением их результатов (Рис. 6).
Рис. 6 График комплексной функции в четырехмерном (4D) пространстве.
Деловая графика. Эта область компьютерной графики предназначена для создания иллюстраций, часто используемых в работе различных учреждений.
Плановые показатели, отчетная документация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы (Рис. 7).
Рис. 7 Графики, круговые и столбчатые диаграммы.
Программные средства деловой графики обычно включаются в состав табличных процессоров (электронных таблиц).
Плановые показатели, отчетная документация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы (Рис. 7).
Конструкторская графика. Она используется в работе инженеров-конструкторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом систем автоматизации проектирования (САПР). Графика в САПР используется для подготовки технических чертежей проектируемых устройств (Рис. 8).
Рис. 8. Графика в САПР.
Графика в сочетании с расчетами позволяет проводить в наглядной форме поиск оптимальной конструкции, наиболее удачной компоновки деталей, прогнозировать последствия, к которым могут привести изменения в конструкции. Средствами конструкторской графики можно получать плоские изображения (проекции, сечения) и пространственные, трехмерные, изображения.
Иллюстративная графика. Программные средства иллюстративной графики позволяют человеку использовать компьютер для произвольного рисования, черчения подобно тому, как он это делает на бумаге с помощью карандашей, кисточек, красок, циркулей, линеек и других инструментов. Пакеты иллюстративной графики не имеют какой-то производственной направленности. Поэтому они относятся к прикладному программному обеспечению общего назначения.
Простейшие программные средства иллюстративной графики называются графическими редакторами.
Художественная и рекламная графика. Это сравнительно новая отрасль, но уже ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации и многое другое.
Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этого класса графических пакетов является возможность создания реалистических (очень близких к естественным) изображений, а также «движущихся картинок» (рис. 9).
Для создания реалистических изображений в графических пакетах этой категории используется сложный математический аппарат.
Рис. 9 Художественная графика.
Компьютерная анимация. Получение движущихся изображений на дисплее ЭВМ называется компьютерной анимацией. Слово «анимация» означает «оживление».
В недавнем прошлом художники-мультипликаторы создавали свои фильмы вручную. Чтобы передать движение, им приходилось делать тысячи рисунков, отличающихся друг от друга небольшими изменениями. Затем эти рисунки переснимались на кинопленку. Система компьютерной анимации берет значительную часть рутинной работы на себя. Например, художник может создать на экране рисунки лишь начального и конечного состояний движущегося объекта, а все промежуточные состояния рассчитает и изобразит компьютер. Такая работа также связана с расчетами, опирающимися на математическое описание данного типа движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.
Объекты называются самоподобными когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.
Рис.10 Фрактальная фигура.
Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранятся и изображение строится исключительно по уравнениям.
Объекты называются самоподобными, когда увеличенные части объекта походят на сам объект. Небольшая часть фрактала содержит информацию обо всем фрактале.











