принципы кодирования наследственной информации

Кодирование и реализация биологической информации в клетке. Генетический код. Кодовая система ДНК и белка

Биосинтез белка – это цепь реакций, в которых используется энергия АТФ. Во всех реакциях синтеза белка участвуют ферменты. Биосинтез белка – это матричный синтез.

1. Триплетность Каждая аминокислота кодируется последовательностью из 3-х нуклеотидов.

2. Вырожденность. Все аминокислоты, за исключением метионина и триптофана, кодируются более чем одним триплетом. Всего 61 триплет кодирует 20 аминокислот.

3. Однозначность. Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляции.

4. Компактность, или отсутствие внутригенных знаков препинания. Внутри гена каждый нуклеотид входит в состав значащего кодона.

23.Принцип кодирования и реализации генетической информации в клетке, свойства генетического кода их биологический смысл. Этапы реализации информации, их характеристика. Понятие о прямой и обратной транскрипции.

Генетический код– система записи наследственной информации, за которой последовательность нуклеотидив в ДНК (у некоторых вирусов РНК) определяет последовательность аминокислот в молекулах белков. Поскольку в процессе реализации генетическая информация переписывается с ДНК на иРНК, генетический код читается за иРНК и записывается с помощью четырех азотистых основ РНК (А, В, Г, Ц).

Кодон – последовательность трех соседних нуклеотидив (триплет) иРНК, которая кодирует определенную аминокислоту или начало и конец трансляции.

Генетический код: его свойства и понятие. Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидах зашифрована в молекулах ДНК с помощью генетического кода. В многообразии белков, существующих в природе, было обнаружено около 20 различных аминокислот.

Свойства генетического кода:

· «вырожденность», или избыточность генетического кода, т.е. одну и ту же аминокислоту может кодировать несколько триплетов, так как известно 20 аминокислот и 64 кодона

· неперекрываемость, т.е. между триплетами в молекуле ДНК не существует разделительных знаков, они расположены в линейном порядке, следуя один за другимтри рядом расположенных нуклеотида образуют один триплет;

· универсальность, т.е. для всех организмов, начиная с прокариот и заканчивая человеком, 20 аминокислот кодируются одними и теми же триплетами, что является одним из доказательств единства происхождения всего живого на Земле

Этапы реализации генетической информации I.

Транскрипция— синтез всех видов РНК на матрице ДНК.

Транскрипция, или переписывание, происходит не на всей молекуле ДНК, а на участке, отвечающем за определенный белок (ген). Условия, необходимые для транскрипции:

а) разкручивание участка ДНК с помощью расплетающих белков- ферментов

б) наличие строительного материала.

г) энергия в виде АТФ.

Транскрипция происходит по принципу комплементарности. При этом с помощью специальных белков-ферментов участок двойной спирали ДНК раскручивается, является матрицей для синтеза иРНК. Затем вдоль цепи ДНК движется фермент РНК-полимераза, соединяя между собой нуклеотиды по принципу комплементарности в растущую цепь РНК. Затем одноцепочечная РНК отделяется от ДНК и через поры в мембране ядра покидает клеточное ядро II.

Обратная транскрипция — это процесс образования двуцепочечной ДНК на основании информации в одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.

Источник

Биология

План урока:

Генетическая информация

Население Земли составляет более 7,6 млрд.человек, но найти одинаковых людей просто невозможно. Каждый человек обладает уникальными особенностями, которые сформировались в процессе его развития. У любого организма есть свой генотип, состоящий из определенного набора генов, которые определяют свойства организма или признаки.Все эти факторы являются решающими при формировании и развитии живых существ.

Носителем генетической информации считаются нуклеиновые кислоты. Подробно мы с ними знакомились в 5 уроке «Химический состав клетки».

На молекуле ДНК осуществляется хранение генетической информации, которая записана на ней в виде последовательности нуклеотидов.

Определенный участок ДНК, который выполняет функцию хранения генетической информации,получил название ген.

Информация о синтезе определенного вида белков записана на ДНК в виде сообщений, закодированных последовательностью нуклеотидов. Такие зашифрованные сообщения получили название генетического кода организма.

Генетический код разных организмов обладает рядом общих свойств. Остановимся подробнее на каждом из них.

1. Триплетность – каждая аминокислота кодируется сочетанием из трех расположенных нуклеотидов, получивших название кодон или триплет. Соответственно, единицей генетического кода будет триплет.

Мы уже знаем, что генетическая информация организма записана на молекуле ДНК посредством сочетания четырех нуклеотидов – аденин (А), гуанин (Г), цитозин (Ц), тимин (Т). Нетрудно посчитать, что число возможных комбинаций из четырех нуклеотидов по три составит 64, этого сочетания вполне достаточно для кодирования 20 аминокислот, входящих в состав белка. Вспомнить строение белка вам поможет урок 5 «Химический состав клетки». В настоящее время установлены кодоны для всех известных аминокислот и составлена таблица генетического кода. В следующем пункте остановимся подробнее на правилах пользования данной таблицы и решении задач по расшифровке генетического кода.

2. Код является множественным, или «вырожденным», в таком случае одна и та же аминокислота способна шифроваться несколькими триплетами. Избыточность генетического кода имеет значение для повышения надежности передачи генетической информации.

Специфичность генетического кода заключается в том, что каждый триплет шифрует только одну аминокислоту.

4. Код считается неперекрывающимся, при этом один и тот же нуклеотид не способен содержаться в составе двух рядом расположенных триплетов.

5. В генетическом коде отсутствуют запятые, то есть если произойдет выпадение одного нуклеотида, его место займет ближайший нуклеотид из соседнего кодона, благодаря чему изменится весь порядок считывания. Данный сбой приводит к появлению различных мутаций на генном уровне. Однако, молекула ДНК весьма длинная и складывается из миллионов нуклеотидных пар, поэтому генетическая информация о структуре белка должна быть разграничена. И действительно, существуют триплеты-инициаторы синтеза белковой молекулы и триплеты, которые прекращают синтез белка. Данные кодоны служат своеобразными знаками препинания генетического кода.

6. Нуклеотидный код является единым для всех живых организмов, в этом проявляется его универсальность. Это свойство кода считается убедительным доказательством общности происхождения живой природы.

Из всего вышесказанного можно сделать вывод о том, что такое генетической информации.

Генетической информации присущи определенные свойства:

Решение задач по расшифровке генетического кода

В молекулярной биологии широко используется таблица генетического кода. Ее применяют для определения последовательности аминокислот в белке.

Используя таблицу для расшифровки генетического кода, следует вспомнить сокращенные названия аминокислот, которые нам понадобятся при решении задач.

Рассмотри алгоритм действий при решении задач на определение генетического кода.

1. Разделим участок молекулы ДНК на отдельные триплеты: ААГ – ЦТТ – ТГЦ – ЦАГ.

2. Первый триплет начинается с аденина А ищем его в первом горизонтальном столбце. Учитываем, что нуклеотиды ДНК расположены в таблице генетического кода в скобках. Второе основание тоже аденинА расположен во втором горизонтальном столбце. Третье основание – гуанин Г, расположен в последнем столбце таблицы генетического кода. На пересечении столбцов мы находим необходимую аминокислоту – Фен, используя таблицу сокращений аминокислот, узнаем, что это фенилаланин.

3. Таким же способом определяем аминокислоты ещё для трех триплетов.

В итоге получаем для триплета ЦТТ – глутаминовая кислота, ТГЦ кодирует треонин, а ЦАГ – валин. Тогда у нас получилась следующая последовательность аминокислот: Фен – Глу – Тре – Вал. Соответственно, из данного отрезка молекулы ДНК образуется белок, состоящий из полученной последовательности аминокислот. Биосинтез белка сложный, многоступенчатый процесс, который рассмотрим в следующем пункте.

Биосинтез белка

Структура любого белка зашифрована в ДНК, которая не участвует в его биосинтезе. Данная молекула работает лишь матрицей для создания иРНК. Впервые в живых организмах мы сталкиваемся с реакциями матричного синтеза. Для неживой природы такие процессы не характерны. Такие реакции происходят очень быстро и точно. Рассмотрим их на примере сборки белковой молекулы.

Биосинтез белка происходит на рибосомах, пребывающих в большей степени в цитоплазме. Значит, с целью передачи генетической информации с ДНК к зоне формирования белка требуется проводник. В качестве его выступает иРНК.

1. Непосредственно образованию белка предшествует матричный синтез иРНК, который именуется транскрипция.

Установлено, что РНК синтезируется в ядре клетки на одной из цепочек ДНК согласно принципу комплиментарности. Подробно описан данный принцип в 5 уроке «Химический состав клетки».

Процесс транскрипции белка совершается никак не на целой молекуле ДНК, а только на небольшой ее зоне. Активная роль здесь отводится ферменту РНК-полимераза, которая способствует формированию РНК и распознает «знаки препинания». Транскрипция РНК, нужной с целью формирования белка, происходит в несколько последовательных этапов.

Сначала при содействии ферментов разрываются водородные связи в азотистых основаниях цепочки ДНК. В результате этого нити ДНК разъединяются. В этом месте начинается процесс транскрипции РНК – передача данных с ДНК, необходимых в синтезе определенного белка. Фермент перемещается по цепи ДНК и связывает между собой нуклеотиды в увеличивающуюся цепь иРНК. При биосинтезе белка транскрипция способна совершаться синхронно на некоторых генах одной хромосомы, а также на генах, размещенных на разных хромосомах. В следствие обмена генетической информацией формируется иРНК с последовательностью нуклеотидов, являющихся верной копией матрицы ДНК.

Синтезированная в ядре иРНК отделяется от своей матрицы и через поры ядерной оболочки поступает в цитоплазму, где прикрепляется к малой субъединице рибосом.

На специальных генах формируются и два других типа РНК – тРНК и рРНК. Начало и конец синтеза всех типов РНК строго зафиксирован специальными триплетами, выполняющими функцию «знаков препинания».

2. Вторым этапом синтеза белка считается трансляция. Проистекают данные реакции в рибосомах, куда доставляется информация о структуре белка на иРНК. Процесс трансляции заключается в переносе и реализации генетической информации в виде синтеза белка.

Зрелые молекулы иРНК, попав в цитоплазму, присоединяются к рибосомам и затем постепенно протягиваются через ее тело. В каждый момент биосинтеза белка в клетке внутри рибосомы находится незначительный участок иРНК.

Аминокислоты доставляются в рибосомы различными тРНК, которых в клетке несколько десятков.

Трансляция белка наступает со стартового кодона АУГ. Из этой зоны всякая рибосома прерывисто, триплет за триплетом, перемещается по иРНК, что сопровождается увеличением полипептидной цепочки. Количество аминокислот в белке соответствует числу триплетов иРНК.

Встраивание аминокислот исполняется при содействии тРНК – главных агентов биосинтеза белка в организме.

Цепь тРНК своей конфигурацией напоминает листик клевера. На вершине размещается особенный триплет – антикодон, который прикрепляется согласно принципу комплиментарности к конкретному кодону иРНК.

Рассмотрим последовательность ключевых процессов данного этапа биосинтеза белка.

Молекула тРНК, несущая первостепенную аминокислоту, подходит к рибосоме и примыкает антикодоном к комплиментарному ей триплету. Впоследствии к данной рибосоме присоединяется второй комплекс из тРНК и аминокислоты. В итоге между аминокислотами зарождается пептидная связь.

Первая тРНК, сбросив аминокислоту, оставляет рибосому. Затем к сформировавшейся цепочке прикрепляется третья аминокислота, доставленная в рибосому собственной тРНК, потом четвертая и так далее.

Течение биосинтеза белка не прекращается вплоть до тех пор, пока рибосома не достигнет одного из трех стоп-кодонов – УАА, УАГ или УГА.

На этом образование данной белковой цепочки прекращается, а иРНК под действием ферментов распадаются на нуклеотиды.

Всякий этап биосинтеза белка ускоряется подходящим ферментом и снабжается энергией за счет расщепления АТФ.

Большую роль в транспорте белка после его биосинтеза играет эндоплазматическая сеть. Образовавшиеся белки поступают в ее каналы, по которым перемещаются к определенным участкам клетки.

Синтез белковых молекул протекает непрерывно и с большой скоростью: в одну минуту образуется примерно 50-60 тысяч пептидных связей. Синтез одной молекулы длится всего 3-4 секунды.

Для сравнения можно привести пример синтезированного искусственно белка инсулина. Эта молекула состоит из 51 аминокислотного остатка, а для его синтеза потребовалось провести около 5000 операций. В этой работе принимали участие 10 человек в течении трех лет. Как видите, в лабораторных условиях синтез белка требует огромных усилий, времени и средств.

В результате биосинтеза половина белков нашего тела обновляются за 80 дней. За всю свою жизнь человек обновляет весь свой белок около 200 раз.

Синтез белка характерен только для живых существ, значит, является основным отражением свойств живого.

Источник

ДНК. Механизмы хранения и обработки информации. Часть II

принципы кодирования наследственной информации. Смотреть фото принципы кодирования наследственной информации. Смотреть картинку принципы кодирования наследственной информации. Картинка про принципы кодирования наследственной информации. Фото принципы кодирования наследственной информации

Привет Хабр! Сегодня мы продолжим прошлый рассказ о ДНК. В нем мы поговорили о том, сколько ее бывает, как ДНК хранится и почему так важно то, как она хранится. Сегодня мы начнем с исторической справки и закончим основами кодирования информации в ДНК.

История

Сама по себе ДНК была выделена еще в 1869 году Иоганном Фридрихом Мишером из лейкоцитов, которые он получал из гноя. Лейкоциты это белые клетки крови, выполняющие защитную функцию. В гное их довольно много, ведь они стремятся к поврежденным тканям, где «поедают» бактериальные клетки. Он выделил вещество, в состав которого входят азот и фосфор. Вначале оно получило название нуклеин, однако, когда у него обнаружили кислотные свойства, название изменили на нуклеиновую кислоту. Биологическая функция новооткрытого вещества была неясна, и долгое время считалась, что в нем запасается фосфор. Даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, как тогда казалось, было слишком однообразным и не могло закодировать столько информации.

К 1901 году Альбрехт Коссель выделил и описал пять азотистых оснований, входящих в состав ДНК и РНК. А еще чуть позже Петр Левен установил, что углеводным компонентом нуклеиновых кислот являются дезоксирибоза и рибоза. Нуклеиновые кислоты, в состав которых входит рибоза стали называть рибонуклеиновыми кислотами или, сокра­щенно, РНК, а те, которые содержали дезоксирибозу, дезоксирибонуклеиновыми кислотами, или ДНК.

Теперь, встал вопрос, как отдельные звенья соединены между собой. Для этого цепи ДНК нужно было разрушить и посмотреть на то, что получится после разрушения. Для этого полимер ДНК подвергался гидролизу. Однако Левен изменил метод гидролиз. Теперь вместо многочасового кипячения в закисленной среде он использовал ферменты. На этот раз из гидролизатов удалось выделить не только отдельные аденин, гуанин, тимин, цитозин, дезоксирибозу и фосфорную кислоту, но и более крупные фраг­менты, например соединения азотистых оснований с углеводом или углевода с фосфорной кислотой. Вместе с тем в гидролизатах нуклеиновых кислот не были обнаружены соедине­ния, состоящие из двух азотистых оснований, или соединения типа основание – фосфорная кислота. То есть стало понятно, что фосфорная кислота соединяется с сахаром, а он в свою очередь, с азотистым основанием. Соединения азотистых ос­нований с углеводом было предложено называть нуклеозидами, а фос­форные эфиры нуклеозидов назвали нуклеотидами.

В результате этих работ Левен пришел к выводу, что нуклеиновые кислоты являются полимерами. В качестве мономеров служат нуклео­тиды. Содержание каждого из четырех нуклеотидов в ДНК, или РНК, по данным химического анализа того времени, представлялось Левену равным. Поэтому Левен предложил следую­щую теорию строения нуклеиновых кислот: они являются поли­мерами, мономерами которых служат блоки из четырех нуклео­тидов, соединенных последовательно.
Теория тетрануклеотидного строения в то время выглядела вполне обоснованно, войдя во все учебники довоенного времени. Однако вопрос функции ДНК оставался неясным. Чтобы прояснить этот вопрос понадобилось почти полвека.

Наступил период, во время которого биологи накапливали сведения об распространении нуклеиновых кислот в различных типах животных и растительных тканей, в бактериях и вирусах, в некоторых одноклеточных организмах.

В то время научное сообщество всерьез полагало, что за хранение генетической информации ответственны именно белки. Традиционное представление о первичной роли белков в жизненном процессе не позволяло и думать о том, что столь важное ве­щество, как вещество наследственности, могло быть чем-либо, кроме белка. Белки были крайне разнообразны по своей структуре, чего тогда не могли сказать о нуклеиновых кислотах. Известный советский генетик-цитолог Н. К. Кольцов подсчитал, что, варьируя последовательность 20 аминокислот, входящих в состав белковой молекулы, можно создать триллионы непохожих друг на друга белков.

Если бы мы захотели напечатать в самой упрощенной форме, как печатаются логарифмические таблицы, этот триллион молекул и предоставили для выполнения этого плана все ныне существующие типографии мира, выпуская в год 50000 томов по 100 печатных листов, то до конца предпринятой работы протекло б столько времени, сколько его прошло с архейского периода д наших дней.

Действительно много… 20 в 20й… А ведь последовательности бывают куда длиннее чем 20 аминокислот.

А вот как пишет по этому поводу А. Р. Кизель – один из наиболее эрудированных биохимиков того времени.

Из только что приведенных воззрений на роли нуклеиновой кислоты… вытекает ее непричастность к строению генов и следует, что гены составлены из какого-то другого материала. Этого материала мы еще достоверно не знаем, несмотря на то, что он в большинстве случаев прямо называется белком.

Первый успех пришел из микробиологии. В 1944 г. были опубликованы результаты опытов Эвери и сотрудников (США) по трансформации бактерий. Пару слов о трансформации.

Сама трансформация была открыта в 1928 году микробиологом Гриффитсом.

Гриффит работал с культурами пневмококка (Streptococcus pneumoniae) возбудителя одной из форм пневмонии. Некоторые штаммы этой бактерии являются вирулентными, вызывая воспаление легких. Их клетки покрыты полисахаридной капсулой, защищающей бактерию от действия иммунной системы. В культуре такие бактерии образуют крупные гладкие колонии правильной сферической формы. Благодаря этому, они получили название S–штаммы (от английского smooth – гладкий).

Существуют различные вирулентные штаммы пневмококка, они отличаются по антителам, которые вырабатываются в организме при попадании в него бактерий. Их называют IS, IIS, IIIS и т. д. Время от времени некоторые клетки вирулентных штаммов S мутируют, утрачивая способность синтезировать полисахаридную оболочку, и становятся авирулентными. В культуре они образуют мелкие шероховатые колонии неправильной формы, из-за этого получили название R–штаммов (от английского rough – шероховатый). Иногда происходят обратные мутации, восстанавливающие способность к синтезу полисахаридной оболочки, но только в группах соответствующих штаммов:

IIS — IIR
IIIS — IIIR

Это говорит о том, что авирулентные R–штаммы всегда соответствуют родительскому вирулентному S–штамму.

принципы кодирования наследственной информации. Смотреть фото принципы кодирования наследственной информации. Смотреть картинку принципы кодирования наследственной информации. Картинка про принципы кодирования наследственной информации. Фото принципы кодирования наследственной информации

Гриффит вводил разным группам лабораторных мышей вирулентный и авирулентный штамм пневмококка. В первой контрольной группе инъекция вирулентного штамма IIIS приводила к гибели животных. Животные второй контрольной группы после инъекции авирулентного штамма IIR оставались живы. После этого Гриффит нагревал раствор с культурой вирулентого штамма IIIS при температуре 60 °С, что привело к гибели бактерий. Убитые нагреванием бактерии он ввел третьей группе подопытных мышей. Животные остались живы, что в принципе и ожидалось. Однако это не все. Он ввел части выживших мышей бактерии авирулентного штамма IIR.

Казалось, ни к каким страшным последствиям для мышей это не могло привести. Однако вопреки ожиданиям, животные погибли. Когда из их тел были выделены бактерии и высеяны в культуру, оказалось, что они относятся к вирулентному штамму IIIS.

принципы кодирования наследственной информации. Смотреть фото принципы кодирования наследственной информации. Смотреть картинку принципы кодирования наследственной информации. Картинка про принципы кодирования наследственной информации. Фото принципы кодирования наследственной информации

Тот факт, что вызывающие гибель мышей клетки синтезировали полисахаридную оболочку типа III, а не II, свидетельствовал о том, что они не могли возникнуть в результате обратной мутации IIR — IIS. Из этого Гриффит сделал очень важный вывод. Авирулентные бактерии штамма IIR могут трансформироваться в вирулентные как-то взаимодействуя с убитыми нагреванием бактериями штамма IIIS, которые еще оставались в теле мышей. Другими словами, авирулентные бактерии штамма IIR получают от мертвых бактерий штамма IIIS некий фактор, превращающий их в вирулентные. Однако, что это за фактор, Гриффит не знал.

Собственно этот феномен и был назван бактериальной трансформацией. Он представляет собой однонаправленный перенос наследственных признаков от одной бактериальной клетки к другой.

Теперь вернемся к опытам Эвери. Схема их экспериментов несколько схожа с экспериментами Гриффитса. Эвери и сотрудники поставили перед собой задачу выяснить химическую природу трансформирующего агента. Они разру­шали суспензию пневмококков и удаляли из экстракта белки, капсульный полисахарид и РНК, однако трансформирующая активность экстракта сохранялась. Трансформирующая активность препарата не терялась при его обработке кристаллическим трипсином или химотрипсином (разрушающими белки), рибонуклеазой (разрушает РНК). Было ясно, что препарат не являлся ни белком, ни РНК. Однако трансформирующая активность препарата полностью утрачивалась при обработке его дезоксирибонуклеазой (разрушающей ДНК), причем ничтожные количества фермента вызывали полную инактивацию препарата. Таким образом, было установлено, что трансформирующий фактор у бактерий является чис­той ДНК. Этот вывод явился значительным открытием, и Эвери отлично сознавал это. Он писал, что это как раз то, о чем дав­но мечтали генетики, а именно вещество гена. Кажется вот оно доказательство. Но уж слишком сильна была вера в белок, как вещество наследственности. Некоторые считали, что трансформацию могут вызывать и те ничтожные примеси белка, которые оставались в препарате.

Новым доказательством прямой генетической роли ДНК явились опыты вирусологов Херши и Чейз. Они работали с бактериофагом Т2 (Бактериофаги — вирусы бактерий), который заражает бактерию Escherichia coli (кишечную палочку).

принципы кодирования наследственной информации. Смотреть фото принципы кодирования наследственной информации. Смотреть картинку принципы кодирования наследственной информации. Картинка про принципы кодирования наследственной информации. Фото принципы кодирования наследственной информации

Собственно что они сделали. В состав ДНК одних бактериофагов они включили радиоактивный фосфор (P32), а в состав белков других — изотоп серы (S35). Для этого одни бактерии выращивались на среде с добавлением радиоактивного фосфора в составе фосфат иона, другие — на среде с добавлением радиоактивной серы в составе сульфат иона. Затем к этим бактериям добавлялся бактериофаг Т2, который, размножаясь в клетках бактерий, включал радиоактивную метку в свою ДНК (P есть в ДНК, но нет в белках), или белки (S есть в белках, но нет в ДНК).

принципы кодирования наследственной информации. Смотреть фото принципы кодирования наследственной информации. Смотреть картинку принципы кодирования наследственной информации. Картинка про принципы кодирования наследственной информации. Фото принципы кодирования наследственной информации

После выделения радиоактивно-меченых бактериофагов их добавляли к культуре свежих (не содержащих изотопов) бактерий. Что приводило к инфицированию этих бактерий. Бактериофаг присоединяется к клетке бактерии и «впрыскивает» свою ДНК. После этого среду с бактериями подвергали энергичному встряхиванию в специальном смесителе (было показано, что при этом оболочки фага отделяются от поверхности бактериальных клеток), а затем инфицированных бактерий отделяли от среды. Когда в первом опыте к бактериям добавлялись меченые фосфором-32 бактериофаги, оказалось, что радиоактивная метка находилась в бактериальных клетках. Когда же во втором опыте к бактериям добавлялись бактериофаги, меченые серой-35, то метка была обнаружена во фракции среды с белковыми оболочками, но её не было в бактериальных клетках. Это подтвердило, что материалом, которым инфицировались бактерии, является ДНК. Поскольку внутри инфицированных бактерий формируются полные вирусные частицы, содержащие белки вируса, данный опыт стал одним из решающих доказательств того факта, что генетическая информация (информация о структуре белков) содержится в ДНК.

Эти открытия сильно повлияли на многих биологов того времени. В особенности на знаменитого своими правилами Чаргаффа. Он считал, что Эвери по сути открыл ‘новый язык’, или как минимум показал, где его искать.

Чаргафф при­нялся искать разницу в нуклеотидном составе и расположении нуклеотидов в препаратах ДНК, полученных из различных источников. И, поскольку методов позволяющих точно дать химическую характеристику ДНК, в то время не существовало… ему пришлось их придумать. Им было показано, что старая тетрануклеотидная теория строения нуклеиновых кислот неверна. ДНК у разных организмов по составу и строению сильно отличаются. При этом обнаружились новые факты, не установленные ранее для других природных полимеров, а именно регулярности в соотношении отдельных ос­нований в составе всех исследованных ДНК. Сейчас даже школьники знают их, как правила Чаргаффа.

Потихоньку мы подошли к двум легендарным людям, открывшим структуру ДНК. Фрэнсис Крик и Джеймс Уотсон встретились впервые в 1951 году. Уотсон тогда решил заняться структурой ДНК. Как биолог, он понимал, что при выборе определенной структуры ДНК нужно учитывать существование какого-то простого принципа удвоения молеку­лы ДНК, заложенного в ее структуре. Ведь одним из важнейших свойств генов является передача наследственной информации.
Криком же была создана теория дифракции рентгеновских лучей на спи­ралях, позволяющая опреде­лить, находится исследуемая структура в спиральной конформации или нет. В то вре­мя рентгенограммы ДНК уже существовали. Их получили в Лондоне Морис Уилкинс и Розалинд Фрэнклин.

По характеру рентгенограммы ДНК Уотсон и Крик поняли, что исследуемая структура находится в спираль­ной конформации. Они знали также, что молекула ДНК представляет собой длинную линейную полимерную цепь, состоящую из мономеров-нуклеотидов. Фосфодезоксирибозный костяк этого полимера непрерывен, а сбоку к дезоксирибозным остаткам присоединены азотистые основания. Для построения моделей оставалось решить вопрос, сколько цепей линейного полимера уложено в компактную структуру.

На основании рентгенограммы В-формы ДНК Уотсон и Крик предположили, что молекула ДНК состоит из двух линейных полинуклеотидных цепей с фосфодезоксирибозным остовом снаружи молекулы и азотистыми основаниями внутри ее. Что в последствии подтвердилось. Оставалось только решить вопрос о порядке расположения азотистых оснований двух цепей внутри биспирали.

Рассматривая возможные комбинации пар азоти­стых оснований, Уотсон обнаружил, что пары аденин–тимин и гуанин–цитозин имеют одинаковый размер и ста­билизируются водородными связями. Сразу же объяснялись и правила Чаргаффа: если в биспирали ДНК аденин одной цепи всегда соединяется с тимином другой цепи, а гуанин всегда входит в паре с цитозином, то аденина в составе ДНК должно быть всегда столько же, сколько тимина, а гуанина – столько же, сколько цитозина. Ясно было также, как должно происходить удвоение молекулы ДНК. Каждая цепь комплементарна другой, и в процессе репликации ДНК цепи биспирали должны разойтись и на каж­дой полинуклеотидной цепи должна достроиться комплемен­тарная к ней цепь. Тут тоже было несколько теорий, но о них через неделю, в следующей статье.

Кодирование информации

Итак, мы знаем, что ДНК — носитель информации, знаем из чего она состоит. Но как кодирует информацию — все еще не понятно.

Собственно у нас есть 64 варианта и 20 аминокислот. Аминокислоты могут кодироваться разными кодонами. Так же существуют старт и стоп кодоны, с которых начинается считывание.
Не забываем, что сначала ДНК считывается в РНК, с которой уже происходит считывание в белок.
Таблица внизу — соответствие кодонов РНК аминокислотам. Помним, что в РНК нет тимина, вместо него идет урацил.

принципы кодирования наследственной информации. Смотреть фото принципы кодирования наследственной информации. Смотреть картинку принципы кодирования наследственной информации. Картинка про принципы кодирования наследственной информации. Фото принципы кодирования наследственной информации

Если вы не нашли в таблице старт кодон — поищите AUG. Он кодирует метионин и одновременно является стартовым. При трансляции генов прокариот, пластидных и митохондриальных генов стартовой аминокислотой является N-формилметионин (это просто для справки)).

Если расписать весь путь от ДНК до белка, получим что-то такое.

принципы кодирования наследственной информации. Смотреть фото принципы кодирования наследственной информации. Смотреть картинку принципы кодирования наследственной информации. Картинка про принципы кодирования наследственной информации. Фото принципы кодирования наследственной информации

На данном рисунке синтез идет с красной цепи. Как следствие РНК будет совпадать с синей цепью (не забываем про замену Т на У)

Как я уже говорил, каждую аминокислоту может кодировать несколько кодонов. На первый взгляд это кажется не особо нужным побочным эффектом избыточности числа кодонов. Но у него, на самом деле, довольно важная роль.

Тут мы немного затронем мутации. Они бывают разных типов. От хромосомных, когда целые куски хромосом удаляются из генома, меняются местами, дублируются, до точечных, когда происходит замена одного азотистого основания на другое. Сфокусируемся на точечных мутациях.

К чему могут привести точечные мутации?

Кодон может начать кодировать другую аминокислоту, что не всегда страшно. Такие мутации называются миссенс-мутацими (то есть со сменой смысла). Это может повлиять на структуру белка. Например если положительно заряженная аминокислота заменится на отрицательно заряженную — это может сделать белок нестабильным, или приведет к тому, что он свернется в другую конформацию (да, линейная последовательность аминокислот обычно сворачивается в определенную форму) и не сможет выполнять свои функции (или начнет делать это лучше, это уже попахивает эволюцией).

Если конкретно, то гемоглобин S имеет единичную замену нуклеотида (А на Т) в кодирующем гене. В результате триплет ГАГ, кодирующий глутамат, заменяется на ГТГ, кодирующий валин. Гемоглобин S тоже может транспортировать кислород, но делает это хуже чем обычный гемоглобин.

В молекуле гемоглобина Хикари аспарагин замещен на лизин, однако он все также хорошо перенести кислород.

Как пример с потерей функции рассмотрим гемоглобин M. Другая точечная мутация в гене гемоглобина приводит к полной утрате функции (гистидин меняется на тирозин в активном центре).

Кстати, сворачивание белка выглядит примерно так, если опустить все нюансы.

принципы кодирования наследственной информации. Смотреть фото принципы кодирования наследственной информации. Смотреть картинку принципы кодирования наследственной информации. Картинка про принципы кодирования наследственной информации. Фото принципы кодирования наследственной информации

Что еще может произойти?

Замена одного азотистого основания может так же привести к появлению стоп кодона в центре последовательности, или наоборот стоп кодон в конце исчезнет. На выходе получится либо неполная цепь, либо экстремально длинная цепь, которые в любом случае не смогут нормально функционировать. Такие мутации называются нонсенс.

принципы кодирования наследственной информации. Смотреть фото принципы кодирования наследственной информации. Смотреть картинку принципы кодирования наследственной информации. Картинка про принципы кодирования наследственной информации. Фото принципы кодирования наследственной информации

Есть еще третий тип мутации — сайленс-мутация. По сути происходит смена кодона на другой, кодирующий ту же аминокислоту. Свойства белка не меняются.

Подитожим общей схемой.

принципы кодирования наследственной информации. Смотреть фото принципы кодирования наследственной информации. Смотреть картинку принципы кодирования наследственной информации. Картинка про принципы кодирования наследственной информации. Фото принципы кодирования наследственной информации

В завершение хотел бы еще рассказать об одной интересной особенности. Одну аминокислоту может кодировать несколько кодонов. Это мы знаем. Но что это значит? Организм использует сразу все кодоны для кодирования. Но какие-то чаще, какие-то реже.

Сравним человека и… кишечную палочку (Escherichia coli) по частоте использования кодонов кодирующих цистеин.

Он кодируется двумя кодонами UGU и UGC.

Человек
UGU 10.6
UGC 12.6

Кишечная палочка (штамм O127:H6)
UGU 19.1
UGC 0.0

Цифры это встречаемость триплета на тысячу. Видно, что мы используем оба кодона примерно с одинаковой частотой, в то время как E. coli почти не использует UGC кодон.

Об этой особенности нужно помнить, особенно когда ты занимаешься геноинженерией и хочешь нарабатывать продукт гена одного организма в другом. Если ген человека, с частой встречаемость UGC кодона попытаться вставить в кишечную палочку данного штамма — вас ждет разочарование. В клетке аминокислоты связаны с транспортными РНК, каждая из которых соответствует своему кодону. Так вот тРНК соответствующих UGC кодону будет крайне мало, что сильно замедлит синтез.

Если интересно, тут можно посмотреть отличия в кодонном составе у разных организмов.

Кодонный состав может сильно отличаться как у организмов разных видов, так и разных штаммов. Так у Escherichia coli O157:H7 EDL933 все более менее поровну в плане UGC и UGU. Или вот еще пример. У штаммов туберкулезной палочки выделенных в разных странах также отличается кодовый состав.

Подытожу

В этот раз было очень много истории и относительно мало биологии. Больше такого не будет. Мы поговорили о том, как стало понятно, что ДНК — носитель информации, как она хранится в самой ДНК. Поговорили об избыточности ген кода и о том, к чему это приводит. Немного затронули мутации и разницу в частоте использования определенных кодонов.

В следующий раз поговорим о репликации ДНК.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *