в какую сторону закручена спираль днк

Что такое ДНК, или почему каждый из нас наполовину банан

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Эту аббревиатуру мы слышим довольно часто, но мало кто пытается вникнуть и понять, что же такое ДНК. ДНК расшифровывается как дезоксирибонуклеиновая кислота, но понимания это особо не прибавляет. Будем разбираться дальше.

ДНК – это полимерная молекула. С точки зрения химии – это двойная спираль, которая складывается из нескольких блоков нуклеотидов, повторяющихся много-много раз. А две спирали связаны между собой водородными связями. На самом деле ДНК отнесли к разряду молекул только лишь для удобства, поскольку она во много раз больше стандартных молекул.

Существует всего 4 вида нуклеотидов: аденин, тимин, гуанин, цитозин. И именно в их последовательности и зашифрована генетическая «инструкция» для развития живого организма, то есть вся генетическая информация. Именно молекула ДНК сообщает каждой клетке нашего организма, какие белки и в каком количестве необходимо производить.

Цепочки ДНК закручиваются в спирали тоже неспроста. Это помогает уменьшить длину спирали в 5-6 раз, чтобы более компактно «упаковать» всю генетическую информацию. Ученые подсчитали, что если раскрутить спирали ДНК, то они растянутся на 16 млрд километров (это расстояние от Земли до Плутона и обратно). А если кто-то захочет напечатать геном человека, то на это уйдет 50 лет, если непрерывно набирать текст на компьютере по 8 часов каждый день.

В 99.9% ДНК всех людей на планете одинаковы, а наши различия обусловлены только 0,1%! Удивительно, не так ли? На этом примере очень хорошо понятно, какое огромное количество информации заложено в ДНК, если даже 0,1% отвечает за такое огромное количество различий между всеми людьми на планете. Да что там с людьми. Это покажется комичным, но 50% человеческого ДНК полностью схожа с ДНК банана, а число генов у человека ненамного больше генов у круглого червя.

Разумеется, одна, пусть даже очень большая двойная спираль, не может вместить в себя всю генетическую информацию о человеческом организме. Именно поэтому цепочки составляют пару, которая внешне напоминает букву «Х». Уникальная последовательность из нуклеотидов в одной из двух спиралей ДНК называется геном. Если даже незначительно изменить последовательность в нем, то ген будет поврежден или разрушен, в результате у человека может возникнуть генетическое заболевание.

Источник

Как все закручено

21 вариант того, как может выглядеть ваша ДНК

Мы привыкли представлять себе ДНК в виде двойной спирали — но это лишь одно из множества ее обличий. С тех пор, как Уотсон и Крик опубликовали свою модель, в клетках человека нашли тройную и четверную спираль ДНК, а еще кресты, шпильки и другие варианты переплетения — некоторые проще нарисовать, чем описать словами.

Набросать идей

Уотсон и Крик не были единственными, кто корпел над трехмерной моделью ДНК. Они даже не были первыми. На обрывках биохимических данных можно было построить самые разные молекулярные формы, и вариантов было множество.

Условия задачи у всех были одинаковы. На начало 1953 года уже было понятно, как устроен нуклеотид:

остаток фосфорной кислоты,

одно из азотистых оснований: аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц).

Еще было известно, что азотистые основания разбросаны по цепи не случайно: в любой молекуле ДНК суммарное количество аденинов и гуанинов строго равнялось количеству тиминов и цитозинов. Кроме того, на всех рентгеновских снимках Розалинд Франклин и Рэймонда Гослинга, независимо от того, какой участок ДНК на них был запечатлен, сама нить имела одну и ту же толщину. Это означало, что форма остается неизменной при любой последовательности нуклеотидов.

Из этих вводных Лайнус Полинг и Роберт Кори собрали свою модель — тройную спираль, ощетинившуюся со всех сторон азотистыми основаниями (фосфату и сахару биохимики отвели роль внутреннего стержня). Эта конструкция выглядела неустойчивой: было непонятно, почему отрицательно заряженные фосфатные группы в центре спирали не отталкиваются друг от друга.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Структура ДНК по версии Полинга и Кори

Linus Pauling, Robert B. Corey / PNAS, 1953

Модель Уотсона и Крика с закрученной вправо двойной спиралью оказалась самой устойчивой. Как и Фрезер, ученые расположили фосфаты снаружи, а азотистые основания — внутри. Был в этой модели и четкий принцип их противопоставления: А на одной цепи всегда соединялся с Т на другой, а Г — с Ц. Это объясняло, почему толщина конструкции стабильна — пары А-Т и Г-Ц примерно одинакового размера.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Карандашный набросок структуры ДНК, сделанный Фрэнсисом Криком

Wellcome Images / CC BY-SA 4.0

Уотсон и Крик сделали нечто большее, чем просто разрешили споры о форме ДНК. Их модель сразу же объяснила, как эта форма работает: взаимно однозначное соответствие делает каждую нить шаблоном для другой. Имея только одну из цепей, по ней всегда можно восстановить вторую — на этот принцип опираются все современные модели передачи генетической информации.

Тем не менее, большинство «отвергнутых» идей в чем-то оказались верны. За почти 70 лет пристального разглядывания ДНК в ней удалось обнаружить практически все возможные виды соединения оснований, другие спирали и даже левый поворот.

Свернуть не туда

Уже сама по себе двойная спираль может быть устроена по-разному. Это заметила еще Розалинд Франклин, хотя и не предполагала, что перед ней спираль, да еще и двойная. В обычных условиях, напоминающих внутриклеточные, ДНК на снимках биолога имела «рыхлую» форму, которую Франклин назвала В-ДНК. Но если влажность в пробирке опускалась ниже 75 процентов, получалась А-ДНК, пошире и поплотнее.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

А (слева) и В (справа) формы ДНК, какими их увидела Розалинд Франклин

Rosalind Franlkin, Raymond Gosling / Acta Crystallographica, 1953

Уотсон и Крик выбрали В-ДНК в качестве основы для своей модели и не прогадали. Позже оказалось, что В-вариант действительно встречается в клетке гораздо чаще, и сейчас его считают основной формой существования ДНК, а все отклонения часто обозначают общим термином «не-В ДНК».

Более того, реальная двойная спираль почти никогда не соответствует своей идиллической модели. В живых системах В-ДНК, как правило, скручена чуть сильнее, чем предсказывали Уотсон и Крик, и среднее число нуклеотидов на виток спирали в ней — не 10 и не 11, а около 10,5. Кроме того, отдельные пары нуклеотидов постоянно отклоняются от положенной «горизонтали» (это называют «пропеллерным поворотом») поэтому спираль никогда не бывает абсолютно гладкой и ровной — то тут, то там по ее бокам торчат шероховатости: концы нуклеотидов под разными углами.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

«Пропеллерный» поворот нуклеотидов в В-ДНК

James D. Watson et al. / Molecular Biology of the Gene, 2008

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

А-ДНК (слева), B-ДНК (по центру), Z-ДНК (справа)

Mauroesguerroto / wikimedia commons / CC BY-SA 4.0

Поэтому ДНК часто принимает Z-форму при транскрипции генов. Более того, чем больше при этом Z-ДНК, тем активнее идет транскрипция. Гистоны с Z-ДНК связаться не могут, поэтому полимеразе никто не мешает заниматься своим делом. И этим, кстати говоря, активно пользуются опухолевые клетки, у которых левозакрученная спираль вовремя возникает перед нужными им генами.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Башня «Эволюция» (на переднем плане) имеет вид левозакрученной ДНК

Алфавитный перечень форм ДНК

Попасть в переплет

Помимо всевозможных форм двойной спирали и способов ее плетения, ДНК иногда распадается на отдельные нити, которые образуют в шпильки, кресты и другие двуцепочечные фигуры. Случается и так, что уже существующая двойная спираль обрастает новыми соседями.

В 1985 году выяснилось, что Полинг и Кори тридцать лет назад были правы: тройная спираль ДНК (H-ДНК) существует. Однако устроена она совсем не так, как они предполагали. В настоящей тройной спирали две цепи соединяются стандартным, Уотсон-Криковским способом, а третья примыкает к ним сбоку, ложась в большую бороздку между цепями. При этом азотистые основания третьей, дополнительной нити соединяются с основными парами не классическим способом, а как бы сбоку — теми самыми связями, которые предсказывал Карст Хугстин. Он тоже, в некотором роде, оказался прав.

Тройная спираль, как и многие альтернативные формы ДНК, тоже возникает в ответ на суперспирализацию цепи. Однако, в отличие от Z-формы, она не поддерживает транскрипцию, а наоборот, ей препятствует. РНК-полимераза, которая привычно расплетает две нити перед собой, не всегда справляется с тем, чтобы разделить триплекс. Поэтому если в гене или его регуляторных областях образуется тройная спираль, он работает хуже прочих.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Варианты образования тройной спирали. Уотсон-Криковские пары обозначены черным, добавочный третий нуклеотид выделен цветом

Yutaro Yamagata et al. / Chemistry Europe, 2015

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Гуаниновая тетрада (сверху) и варианты расположения цепей в квадруплексе (снизу)

Jochen Spiegel et al. / Trends in Chemistry, 2020

Чем дальше мы вглядываемся в молекулу ДНК, тем больше замечаем отклонений от давно привычной модели. Двойная спираль — не единственная и не окончательная структура ДНК, а лишь одна (пусть и самая частая) из поз, которую та принимает в непрерывном танце. Повинуясь велению нуклеотидной последовательности, нить ДНК сжимается и разжимается, изгибается, закручивается и принимает бесконечное число (прекрасных) форм. Ни одна из них — не окончательная: альтернативные структуры ДНК переходят друг в друга, конкурируют с В-формой и между собой, подчиняются сигналам клеточных белков и сами направляют их работу.

Найти и возглавить

Неканонические формы ДНК, при всем своем разнообразии, не возникают в случайных местах. Устойчивость им придает определенный набор нуклеотидов в их составе, поэтому и появляются они лишь в тех участках цепи, где для них есть «удобная» последовательность.

Так, например, в ДНК есть определенные участки, которые особенно охотно сворачиваются в зигзаг. Это места, где чередуются пары Г-Ц: после левого поворота в них каждый второй нуклеотид принимает «неправильную» форму, отсюда и ломаный профиль всей Z-формы. Это означает, что последовательности, склонные принимать Z-форму, можно найти прямо в тексте — если видите ГЦГЦГЦГЦГЦГЦ, то вряд ли прогадаете. Так в одной работе, например, насчитали 391 такой участок в человеческом геноме.

Места, в которых может образоваться тройная спираль, тоже можно узнать по характерной последовательности нуклеотидов. Третья цепь присоединяется либо по принципу комплементарности — то есть к паре Г-Ц добавляется еще один Г, образуя Г-Ц*Г — либо «к своему» — и получается Г*Г-Ц. Поэтому часто такая конструкция возникает в тех местах ДНК, где подряд идет несколько одинаковых (например, ГГГГГ) или химически близких (АГГААГ) нуклеотидов и где они образуют палиндромные (зеркальные) повторы.

Точно также по тексту ДНК можно предсказать и появление квадруплексов. По результатам только одного секвенирования (собственно, прямого перевода ДНК в буквы), в геноме человека их нашлось более 700 тысяч. Не все они, вероятно, встречаются in vivo — для этого соответствующем нитям ДНК нужно оказаться рядом в одной точке сложно устроенного клеточного ядра — однако это может означать, что четырехспиральным структурам отведена какая-то специфическая роль в жизни клетки.

Далеко не всегда образование альтернативных форм ДНК идет клетке на пользу: большинство из них куда менее прочны, чем обычная В-ДНК, и гораздо чаще рвутся. Поэтому последовательности, которые склонны образовывать не-В формы, становятся участками генетической нестабильности и повышенного мутагенеза. Одни исследователи видят в этом двигатель эволюции — если такие участки появляются в генах, связанных с развитием организма. Другие же винят альтернативные формы ДНК во всех видах болезней, связанных со случайными мутациями и перестановками в геноме — от опухолей до шизофрении и аутизма.

Получается, что ДНК содержит не только информацию о строении клеточных белков и РНК, но и о том, какие формы эта информация может принимать, помимо Уотсон-Криковского стандарта. А уже от этих форм, в свою очередь, зависит то, что с этой информацией произойдет: сможет ли клетка ее реализовать или ген, будет вечно молчать, а то и вовсе сломается, породив какие-то дополнительные мутации.

Вероятно, мы научимся однажды вмешиваться в этот процесс — можно было бы, например, построить цепь нуклеотидов, которая имитировала бы третью цепь в спирали и «подсунуть» ее в нужное время в нужном месте, чтобы заблокировать работу какого-нибудь нежелательного гена в клетке. Были даже более смелые предложения — использовать тройную спираль для прицельного редактирования генома: ввести в клетку нуклеотид, который сможет образовать с целевым участком ДНК тройную спираль и побудить систему репарации заменить этот участок на «здоровый» вариант с другой хромосомы.

А пока мы этому только учимся, остается признать структуру ДНК еще одним видом информации — помимо генетической (нуклеотидного «текста») и эпигенетической (доступности генов для считывания) — который несет в себе наш геном. И нам еще предстоит научиться с ним работать, влияя через форму на содержание, или наоборот.

Источник

Что такое ДНК и хромосомы

Что такое ДНК, и из чего она состоит? Кто и когда открыл эту молекулу в клетках человека и других живых организмов? Чем уникален открытый учеными механизм наследования, и какие последствия ждал весь мир после этого открытия? Всю необходимую информацию Вы можете узнать, прочитав эту статью.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Когда впервые в истории появилось упоминание о ДНК

Иоганнес Фридрих Фишер – врач и биолог-исследователь родом из Швейцарии, стал первым в мире ученым, выделившим нуклеиновую кислоту. Открытие случилось в 1869 году, когда он занимался изучением животных клеток, а именно лейкоцитов, которых много содержалось в гное. Совершенно случайно молодой ученый заметил, что при отмывании лейкоцитов с гнойных повязок от них остается загадочное соединение. Под микроскопом Иоганн обнаружил, что оно содержится в ядрах клеток. Это соединение Мишер назвал нуклеином, а в процессе изучения его свойств переименовал в нуклеиновую кислоту, из-за наличия свойств, как у кислот.

Роль и функции только открытой нуклеиновой кислоты были неизвестны. Однако многие ученые того времени уже высказывали свои теории и предположения о существовании механизмов наследования.

Нынешние взгляды на состав молекулы ДНК ассоциируются у людей с именами английских ученых Джорджа Уотсона и Фрэнсиса Крика, которые открыли структуру данной молекулы в 1953 году. За несколько лет до этого, в тридцатые годы, ученые из советского союза А.Н. Белозерский и А.Р. Кезеля доказали наличие ДНК в клетках во всех живых организмах, тем самым они опровергли теорию о том, что молекула ДНК находится только в клетках животных, а в клетках растений присутствует только РНК. Лишь спустя несколько лет, в 1944 году, группой освальдских ученых было установлено, что молекула ДНК является механизмом сохранения наследственной информации клетки. Таким образом, благодаря совместным усилиям и трудам исследователей человечество познало тайну процесса эволюции и его основных принципов.

ДНК в медицине

Открытие состава молекулы дезоксирибонуклеиновой кислоты позволило перейти медицине на новый уровень развития. Появилось большое количество новых направлений практической медицины, стали доступны новые методы лечения, диагностики. Благодаря этому фундаментальному открытию для науки и современным технологиям, человечеству стали доступны:

И это еще не все доступные для людей услуги, которые может предложить медицина, изучающая генетику. Выше были представлены только самые популярные среди людей тесты. Перспективой для многих ученых-генетиков является создание таких лекарств, способных победить все болезни на Земле и даже смертность.

Строение молекулы ДНК

От цепочки к хромосоме

В каждом живом организме находится миллионы клеток, а внутри этих клеток находится ядро. Клетки, содержащие в себе ядро, называются эукариотами или ядерными. У древних одноклеточных нет оформленного ядра. К таким безъядерным одноклеточным, или прокариотам, относятся бактерии и археи, например, кишечная палочка или серая анаэробная бактерия. Также ядро отсутствует в клетках вирусов и вироидов, однако причисление вирусов к живым организмам – вопрос спорный, о котором по сей день дискуссируют ученые.

В ядре находятся хромосомы – структурный элемент, в котором содержится молекула ДНК в виде спирали, хранящая внутри себя всю генетическую информацию клетки.

Процесс упаковки ДНК спиралей

Количество нуклеотидов в ДНК велико, и нужны длинные цепочки, чтобы вместить все их число, поэтому нити ДНК закручиваются в две спирали, что позволяет укоротить цепочки в 5 раз, сделав их более компактными. Нити ДНК могут также закручиваться в форму суперспирали. Двойная спираль пересекает свою ось и накручивается на специальные гистоновые белки – гиразы, образуя при этом супервитки. Таким образом, двойная спираль закручивается в спираль более высокого порядка. Сокращение цепочек в этом случае произойдет в 30 раз.

Как гены связаны с ДНК

Ген – самый изученный на сегодняшний день участок ДНК. Гены являются структурной единицей наследственности всех живых организмов. Цепочки нуклеотидов в ДНК состоят из генов, которые определяют генотип особи, например, цвет и разрез глаз, тип кожи, рост, группу и резус фактор крови и другие физиологические качества и особенности внешности.

Еще много отраслей генетики до конца не изучены, и до конца не раскрыты все функции генома, но ученые до сих пор продолжают изучение генов, чтобы добиться новых открытий в области генетики.

Хромосома: определение и описание

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Хромосомы – структурный элемент клетки, находящийся внутри ядра. Они содержат в себе молекулы ДНК, в которых содержится вся наследственная информация.

Строение и виды хромосом:

Отсюда возникают различные типы хромосом:

Всего в клетке человека находится 46 хромосом: 22 пары аутосом, встречающиеся у обоих полов, и одна пара половых хромосом: XY – у мужчин, XX – у женщин. Забавно, что если прибавить к количеству хромосом хотя бы одну пару, то человек мог бы быть шимпанзе или тараканом, а если отнять, то – кроликом.

Еще интересно то, что человек и ясень имеют одинаковое количество хромосом, несмотря на принадлежность к разным видам и царствам.

Наследственные болезни

Генетический код – система записи генетической информации в ДНК и РНК в виде определенной последовательности в цепочке нуклеотидов. Он должен сохранять наследственную информацию в первоначальном виде, восстанавливая повреждения цепочки в последующем поколении с помощью ДНК. Однако ген может каким-то образом быть поврежден, либо в нем может произойти мутация.

Генные мутации – изменение в последовательности нуклеотидов, например выпадение, замена, вставка другого нуклеотида в цепочку. Последствия этих мутаций могут быть полезные, вредные или нейтральные. Примером полезных мутаций является устойчивость к минусовым температурам, увеличенная плотность костей, меньшая потребность во сне, устойчивость к ВИЧ и другие. Примером вредных мутаций является аллергия на солнечный свет, глухота слепота и так далее. К нейтральным мутациям относятся те мутации, которые не влияют на жизнеспособность, например, гетерохромия.

Существуют также летальные и полулетальные мутации. Летальные мутации несовместимы с жизнью и приводят к гибели организма на ранних этапах его развития, например, при рождении у особи отсутствует головной мозг. Полулетальные мутации не приводят к смерти особи, но значительно уменьшают ее жизнеспособность. К таким мутациям относятся заболевания человека, передающиеся по наследству. Например, наличие 47-й хромосомы может вызвать у человека синдром Дауна, а, наоборот, отсутствие 46-й парной хромосомы – сидром Шерешевского-Тернера.

Расшифровка цепочки ДНК

Расшифровка цепочки ДНК в клетке – это исследование всех известных генов в клетках человека. Хоть цена за такую услугу значительно упала за последние десять лет, однако такое исследование по-прежнему остается дорогим удовольствием, и не каждый человек сможет позволить себе оплатить такую услугу. Чтобы уменьшить цену этого исследования, расшифровку ДНК стали делить по тематикам. Таким образом, появились различные тесты, которые исследуют интересующую человека группу генов и ее функции.

Как происходит расшифровка цепочки ДНК?

Таким образом, ученые получают картину гена, которую можно изучить и расшифровать. Синтез РНК Нуклеотиды делятся на четыре базовых элемента, служащими основой для формирования генов: АТГЦ, или аденин, тимин, гуанин, цитозин. В их состав входят фосфорные остатки, азотистые основания и пептоза.

Важно, что молекула дезоксирибонуклеиновой кислоты не должна выходить за пределы мембраны ядра. С помощью РНК, которая играет роль копии участка цепи с генетическим кодом, генетическая цепочка может покинуть ядро, попасть вовнутрь клетки и воздействовать на ее внутренние процессы.

Как это происходит:

Итак, группа генов, участвующих в процессе старения клеток может, как заставить процесс старения идти быстрее, так и вовсе его остановить и запустить процесс омолаживания. То есть, каждый из генов может спровоцировать синтез нескольких видов белка.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Сутягина Дарья Сергеевна

В нашей ДНК содержится очень много информации, но пока мы можем расшифровать лишь небольшой процент генов. Добавлю несколько интересных фактов о ДНК: возможность двойной ДНК у человека. Такое явление случается, когда при беременности в утробе развиваются близнецы, но в процессе развития плода они сливаются в одного человека. Длина одной молекулы ДНК человека равна 2 метрам, а общая длина цепочки ДНК всех клеток тела человека равна 16 млрд. километрам, что равно расстоянию от Земли до Плутона. ДНК человека и кенгуру всего лишь 150 млн. лет назад были одинаковыми. Все знания и информация во всем мире могла бы уместиться всего лишь в 2 граммах дезоксирибонуклеиновой кислоты.

ООО «Медикал Геномикс» Лицензия № ЛО-69-01-002086 от 06.10.2017

Юр. адрес: г. Тверь, ул. Желябова, 48

ООО «Лаб-Трейдинг», ИНН: 6950225035, ОГРН: 1186952017053, КПП:695001001

Юр. адрес: г. Тверь, ул. 1-Я За Линией Октябрьской Ж/Д, 2, оф. 22

Источник

Как все закручено. 21 вариант того, как может выглядеть ваша ДНК

Мы привыкли представлять себе ДНК в виде двойной спирали — но это лишь одно из множества ее обличий. С тех пор, как Уотсон и Крик опубликовали свою модель, в клетках человека нашли тройную и четверную спираль ДНК, а еще кресты, шпильки и другие варианты переплетения — некоторые проще нарисовать, чем описать словами.

Набросать идей

Уотсон и Крик не были единственными, кто корпел над трехмерной моделью ДНК. Они даже не были первыми. На обрывках биохимических данных можно было построить самые разные молекулярные формы, и вариантов было множество.

Условия задачи у всех были одинаковы. На начало 1953 года уже было понятно, как устроен нуклеотид:

остаток фосфорной кислоты,

одно из азотистых оснований: аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц).

Еще было известно, что азотистые основания разбросаны по цепи не случайно: в любой молекуле ДНК суммарное количество аденинов и гуанинов строго равнялось количеству тиминов и цитозинов. Кроме того, на всех рентгеновских снимках Розалинд Франклин и Рэймонда Гослинга, независимо от того, какой участок ДНК на них был запечатлен, сама нить имела одну и ту же толщину. Это означало, что форма остается неизменной при любой последовательности нуклеотидов.

Из этих вводных Лайнус Полинг и Роберт Кори собрали свою модель — тройную спираль, ощетинившуюся со всех сторон азотистыми основаниями (фосфату и сахару биохимики отвели роль внутреннего стержня). Эта конструкция выглядела неустойчивой: было непонятно, почему отрицательно заряженные фосфатные группы в центре спирали не отталкиваются друг от друга.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Структура ДНК по версии Полинга и Кори

Linus Pauling, Robert B. Corey / PNAS, 1953

Эту проблему решил Брюс Фрезер, вывернув конструкцию наизнанку: в его варианте три нити смотрели фосфатами наружу. Азотистые основания были обращены внутрь, однако Фрезер так и не смог объяснить, по какому принципу они соединены.

Модель Уотсона и Крика с закрученной вправо двойной спиралью оказалась самой устойчивой. Как и Фрезер, ученые расположили фосфаты снаружи, а азотистые основания — внутри. Был в этой модели и четкий принцип их противопоставления: А на одной цепи всегда соединялся с Т на другой, а Г — с Ц. Это объясняло, почему толщина конструкции стабильна — пары А-Т и Г-Ц примерно одинакового размера.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Карандашный набросок структуры ДНК, сделанный Фрэнсисом Криком

Wellcome Images / CC BY-SA 4.0

Потом были и другие попытки пересобрать ДНК в новую форму. Голландский биохимик Карст Хугстин, например, заметил, что можно соединить те же самые пары нуклеотидов другими гранями, — так спираль тоже оставалась стабильной, но получалась тоньше. Другие авторы изображали ДНК в виде спирали с чередующимися правым и левым поворотами, или даже в виде двух двойных спиралей, которые образуют единую четверку. И хотя существование Уотсон-Криковской двойной спирали с тех пор много раз подтвердилось, в XXI веке продолжают размышлять о том, какие формы принимает нить ДНК внутри клетки, где ее разглядеть намного сложнее, чем в пробирке. Правда, ни одна из альтернативных идей до сих пор не оказалась достаточно хороша, чтобы отказаться от классической правозакрученной двойной спирали.

Уотсон и Крик сделали нечто большее, чем просто разрешили споры о форме ДНК. Их модель сразу же объяснила, как эта форма работает: взаимно однозначное соответствие делает каждую нить шаблоном для другой. Имея только одну из цепей, по ней всегда можно восстановить вторую — на этот принцип опираются все современные модели передачи генетической информации.

Тем не менее, большинство «отвергнутых» идей в чем-то оказались верны. За почти 70 лет пристального разглядывания ДНК в ней удалось обнаружить практически все возможные виды соединения оснований, другие спирали и даже левый поворот.

Свернуть не туда

Уже сама по себе двойная спираль может быть устроена по-разному. Это заметила еще Розалинд Франклин, хотя и не предполагала, что перед ней спираль, да еще и двойная. В обычных условиях, напоминающих внутриклеточные, ДНК на снимках биолога имела «рыхлую» форму, которую Франклин назвала В-ДНК. Но если влажность в пробирке опускалась ниже 75 процентов, получалась А-ДНК, пошире и поплотнее.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

А (слева) и В (справа) формы ДНК, какими их увидела Розалинд Франклин

Rosalind Franlkin, Raymond Gosling / Acta Crystallographica, 1953

Как выяснилось потом, А-ДНК действительно закручена туже: в ней на виток спирали уходит 10 нуклеотидов, а не 11, как в В-ДНК. И расположены они не перпендикулярно оси симметрии спирали, а под углом: если в В-ДНК нуклеотиды обычно изображают горизонтальными черточками, в А-ДНК их следовало бы рисовать косыми.

Уотсон и Крик выбрали В-ДНК в качестве основы для своей модели и не прогадали. Позже оказалось, что В-вариант действительно встречается в клетке гораздо чаще, и сейчас его считают основной формой существования ДНК, а все отклонения часто обозначают общим термином «не-В ДНК».

Более того, реальная двойная спираль почти никогда не соответствует своей идиллической модели. В живых системах В-ДНК, как правило, скручена чуть сильнее, чем предсказывали Уотсон и Крик, и среднее число нуклеотидов на виток спирали в ней — не 10 и не 11, а около 10,5. Кроме того, отдельные пары нуклеотидов постоянно отклоняются от положенной «горизонтали» (это называют «пропеллерным поворотом») поэтому спираль никогда не бывает абсолютно гладкой и ровной — то тут, то там по ее бокам торчат шероховатости: концы нуклеотидов под разными углами.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

«Пропеллерный» поворот нуклеотидов в В-ДНК

James D. Watson et al. / Molecular Biology of the Gene, 2008

Позже оказалось, что витки спирали могут не только лежать туже или расслабленнее, но и вовсе закручиваться против часовой стрелки (например, влево закручена спираль башни «Эволюция» в Москва-сити, явно символизирующая нить ДНК). По странному стечению обстоятельств, именно такую ДНК увидели в 1979 году, когда появилась наконец возможность рассмотреть нуклеиновые кислоты с высоким разрешением. Это все еще была двойная спираль, но совсем другой формы: 12 нуклеотидов на виток, еще тоньше, чем В-ДНК и закрученная не вправо, а влево. Торчащие ее на поверхности фосфатные группы образовывали не плавную спираль, а зигзаг, поэтому новый вариант назвали Z-формой.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

А-ДНК (слева), B-ДНК (по центру), Z-ДНК (справа)

Mauroesguerroto / wikimedia commons / CC BY-SA 4.0

Это, конечно, не означало, что Уотсон-Криковская модель неверна. Z-форму удалось получить при достаточно экзотических условиях — в растворе с высокой концентрацией солей. И в клетке она тоже получается из В-ДНК лишь при определенных обстоятельствах: например, когда «напряжение» на цепи слишком высоко и его необходимо сбросить. Напряжение появляется из-за чрезмерного скручивания: нити ДНК и так завернуты друг относительно друга, но образованная ими двойная спираль накручивается на какой-нибудь белок (например, гистон), возникает так называемая суперспирализация. Переход в Z-форму помогает сбросить напряжение и развернуть лишние витки — а это, в свою очередь, важно, чтобы с ДНК могли связываться новые белки, например, полимераза при транскрипции.

Поэтому ДНК часто принимает Z-форму при транскрипции генов. Более того, чем больше при этом Z-ДНК, тем активнее идет транскрипция. Гистоны с Z-ДНК связаться не могут, поэтому полимеразе никто не мешает заниматься своим делом. И этим, кстати говоря, активно пользуются опухолевые клетки, у которых левозакрученная спираль вовремя возникает перед нужными им генами.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Башня «Эволюция» (на переднем плане) имеет вид левозакрученной ДНК

Потом нашлись и другие формы двойной спирали. В зависимости от влажности, содержания солей и последовательности нуклеотидов в конкретном участке, ДНК может еще сильнее удлиняться (Е-ДНК) или сжиматься (C— и D-ДНК), включать в себя ионы металлов (М-ДНК) или вытягиваться так, что вместо азотистых оснований в центре спирали оказываются фосфатные группы (S-ДНК). А после того, как в список добавились другие типы внутриклеточной ДНК, вроде ядерной N-ДНК и рекомбинантной R-ДНК (которые, впрочем, попали в этот список не из-за своей формы, а положения в клетке или происхождения), в английском алфавите для вариантов ДНК практически закончились буквы. Тому, кто решит открыть еще какую-нибудь неканоническую форму, придется выбирать из пяти свободных: F, Q, U, V, и Y.

Алфавитный перечень форм ДНК

Попасть в переплет

Помимо всевозможных форм двойной спирали и способов ее плетения, ДНК иногда распадается на отдельные нити, которые образуют в шпильки, кресты и другие двуцепочечные фигуры. Случается и так, что уже существующая двойная спираль обрастает новыми соседями.

В 1985 году выяснилось, что Полинг и Кори тридцать лет назад были правы: тройная спираль ДНК (H-ДНК) существует. Однако устроена она совсем не так, как они предполагали. В настоящей тройной спирали две цепи соединяются стандартным, Уотсон-Криковским способом, а третья примыкает к ним сбоку, ложась в большую бороздку между цепями. При этом азотистые основания третьей, дополнительной нити соединяются с основными парами не классическим способом, а как бы сбоку — теми самыми связями, которые предсказывал Карст Хугстин. Он тоже, в некотором роде, оказался прав.

Тройная спираль, как и многие альтернативные формы ДНК, тоже возникает в ответ на суперспирализацию цепи. Однако, в отличие от Z-формы, она не поддерживает транскрипцию, а наоборот, ей препятствует. РНК-полимераза, которая привычно расплетает две нити перед собой, не всегда справляется с тем, чтобы разделить триплекс. Поэтому если в гене или его регуляторных областях образуется тройная спираль, он работает хуже прочих.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Варианты образования тройной спирали. Уотсон-Криковские пары обозначены черным, добавочный третий нуклеотид выделен цветом

Yutaro Yamagata et al. / Chemistry Europe, 2015

Бывает и так, что соединяются не две и не три, а сразу четыре цепи ДНК. Чтобы это произошло, в одном месте должны встретиться четыре гуаниновых нуклеотида — и неважно, находятся они на двух цепях одной нити или на четырех разных нитях, не связанных друг с другом. Каждый гуанин образует неклассическую, хугстиновскую пару с двумя соседями, а все вместе они создают квадратную гуаниновую тетраду. Если рядом с ними находятся другие гуанины, способные создать квадрат, то из них складывается стэк — стопка, которая удерживает рядом четыре цепи ДНК.

в какую сторону закручена спираль днк. Смотреть фото в какую сторону закручена спираль днк. Смотреть картинку в какую сторону закручена спираль днк. Картинка про в какую сторону закручена спираль днк. Фото в какую сторону закручена спираль днк

Гуаниновая тетрада (сверху) и варианты расположения цепей в квадруплексе (снизу)

Jochen Spiegel et al. / Trends in Chemistry, 2020

Все 30 лет, что прошли с момента открытия квадруплексов, количество процессов, в которых они так или иначе замешаны, растет. Известно уже больше двух сотен белков, которые могут избирательно распознавать гуаниновые тетрады — вероятно, последние выполняют роль своего рода генетической разметки, очередного способа регулировать упаковку и транскрипцию генов. Например, они часто встречаются в промоторах (регуляторных участках, с которых начинается транскрипция) разных генов. Совсем недавно ученым даже удалось отличить разные типы рака груди через наборы квадруплексов — от них, в свою очередь, зависело, какие гены в опухолевых клетках были гиперактивны.

Чем дальше мы вглядываемся в молекулу ДНК, тем больше замечаем отклонений от давно привычной модели. Двойная спираль — не единственная и не окончательная структура ДНК, а лишь одна (пусть и самая частая) из поз, которую та принимает в непрерывном танце. Повинуясь велению нуклеотидной последовательности, нить ДНК сжимается и разжимается, изгибается, закручивается и принимает бесконечное число (прекрасных) форм. Ни одна из них — не окончательная: альтернативные структуры ДНК переходят друг в друга, конкурируют с В-формой и между собой, подчиняются сигналам клеточных белков и сами направляют их работу.

Найти и возглавить

Неканонические формы ДНК, при всем своем разнообразии, не возникают в случайных местах. Устойчивость им придает определенный набор нуклеотидов в их составе, поэтому и появляются они лишь в тех участках цепи, где для них есть «удобная» последовательность.

Так, например, в ДНК есть определенные участки, которые особенно охотно сворачиваются в зигзаг. Это места, где чередуются пары Г-Ц: после левого поворота в них каждый второй нуклеотид принимает «неправильную» форму, отсюда и ломаный профиль всей Z-формы. Это означает, что последовательности, склонные принимать Z-форму, можно найти прямо в тексте — если видите ГЦГЦГЦГЦГЦГЦ, то вряд ли прогадаете. Так в одной работе, например, насчитали 391 такой участок в человеческом геноме.

Места, в которых может образоваться тройная спираль, тоже можно узнать по характерной последовательности нуклеотидов. Третья цепь присоединяется либо по принципу комплементарности — то есть к паре Г-Ц добавляется еще один Г, образуя Г-Ц*Г — либо «к своему» — и получается Г*Г-Ц. Поэтому часто такая конструкция возникает в тех местах ДНК, где подряд идет несколько одинаковых (например, ГГГГГ) или химически близких (АГГААГ) нуклеотидов и где они образуют палиндромные (зеркальные) повторы.

Точно также по тексту ДНК можно предсказать и появление квадруплексов. По результатам только одного секвенирования (собственно, прямого перевода ДНК в буквы), в геноме человека их нашлось более 700 тысяч. Не все они, вероятно, встречаются in vivo — для этого соответствующем нитям ДНК нужно оказаться рядом в одной точке сложно устроенного клеточного ядра — однако это может означать, что четырехспиральным структурам отведена какая-то специфическая роль в жизни клетки.

Далеко не всегда образование альтернативных форм ДНК идет клетке на пользу: большинство из них куда менее прочны, чем обычная В-ДНК, и гораздо чаще рвутся. Поэтому последовательности, которые склонны образовывать не-В формы, становятся участками генетической нестабильности и повышенного мутагенеза. Одни исследователи видят в этом двигатель эволюции — если такие участки появляются в генах, связанных с развитием организма. Другие же винят альтернативные формы ДНК во всех видах болезней, связанных со случайными мутациями и перестановками в геноме — от опухолей до шизофрении и аутизма.

Получается, что ДНК содержит не только информацию о строении клеточных белков и РНК, но и о том, какие формы эта информация может принимать, помимо Уотсон-Криковского стандарта. А уже от этих форм, в свою очередь, зависит то, что с этой информацией произойдет: сможет ли клетка ее реализовать или ген, будет вечно молчать, а то и вовсе сломается, породив какие-то дополнительные мутации.

Вероятно, мы научимся однажды вмешиваться в этот процесс — можно было бы, например, построить цепь нуклеотидов, которая имитировала бы третью цепь в спирали и «подсунуть» ее в нужное время в нужном месте, чтобы заблокировать работу какого-нибудь нежелательного гена в клетке. Были даже более смелые предложения — использовать тройную спираль для прицельного редактирования генома: ввести в клетку нуклеотид, который сможет образовать с целевым участком ДНК тройную спираль и побудить систему репарации заменить этот участок на «здоровый» вариант с другой хромосомы.

А пока мы этому только учимся, остается признать структуру ДНК еще одним видом информации — помимо генетической (нуклеотидного «текста») и эпигенетической (доступности генов для считывания) — который несет в себе наш геном. И нам еще предстоит научиться с ним работать, влияя через форму на содержание, или наоборот.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *