в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

В результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Азот – один из элементов-органогенов (т.е. из которых в основном состоят все органы и ткани), массовая доля которого в организме человека составляет до 2,5%. Азот является составной частью таких веществ, как аминокислоты (а, следовательно, пептидов и белков), нуклеотиды, гемоглобин, некоторых гормонов и медиаторов.

Биологическая роль азота

Чистый (элементарный) азот сам по себе не обладает какой-либо биологической ролью. Биологическая роль азота обусловлена его соединениями. Так в составе аминокислот он образует пептиды и белки (наиболее важный компонент всех живых организмов); в составе нуклеотидов образует ДНК и РНК (посредством которых передается вся информация внутри клетки и по наследству); в составе гемоглобина участвует в транспорте кислорода от легких по органам и тканей.

Некоторые гормоны также представляют собой производные аминокислот, а, следовательно, также содержат азот (инсулин, глюкагон, тироксин, адреналин и пр.). Некоторые медиаторы, при помощи которых «общаются» нервные клетки также имеют в своем составе атом азота (ацетилхолин).

Такое соединения как оксид азота (II) и его источники (например, нитроглицерин – лекарственное средство для снижения давления) воздействуют на гладкую мускулатуру кровеносных сосудов, обеспечивая ее расслабление и расширение сосудов в целом (приводит к снижению давления).

Пищевые источники азота

Не смотря на доступность азота для живых организмов (составляет почти 80% атмосферы нашей планеты), человеческий организм не способен усваивать азот в такой (элементарной) форме. В организм человека азот в основном поступает в составе белков, пептидов и аминокислот (растительных и животных), а также в составе таких азотсодержащих соединений, как: нуклеотиды, пурины, и др.

Дефицит азота

Как явление никогда не наблюдают дефицит азота. Поскольку организму в элементарной форме он не нужен, дефицита, соответственно, никогда и не возникает. В отличие от самого азота, дефицит веществ его содержащих (прежде всего белков) явление достаточно частое.

Причины дефицита азота

Последствия дефицита азота

Избыток азота

Как и дефицит, избыток азота как явление не наблюдается никогда – можно говорить только об избытке веществ, его содержащих. Наиболее опасно, когда азот поступает в значительных количествах в организм человека в составе токсичных веществ, например, нитратов и нитритов.

Причины избытка азота

Последствия избытка азота

Суточная потребность в азоте:

10-20 г (соответствует 60-100 г белка в сутки)

Источник

В результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Азот – один из элементов-органогенов (т.е. из которых в основном состоят все органы и ткани), массовая доля которого в организме человека составляет до 2,5%. Азот является составной частью таких веществ, как аминокислоты (а, следовательно, пептидов и белков), нуклеотиды, гемоглобин, некоторых гормонов и медиаторов.

Биологическая роль азота

Чистый (элементарный) азот сам по себе не обладает какой-либо биологической ролью. Биологическая роль азота обусловлена его соединениями. Так в составе аминокислот он образует пептиды и белки (наиболее важный компонент всех живых организмов); в составе нуклеотидов образует ДНК и РНК (посредством которых передается вся информация внутри клетки и по наследству); в составе гемоглобина участвует в транспорте кислорода от легких по органам и тканей.

Некоторые гормоны также представляют собой производные аминокислот, а, следовательно, также содержат азот (инсулин, глюкагон, тироксин, адреналин и пр.). Некоторые медиаторы, при помощи которых «общаются» нервные клетки также имеют в своем составе атом азота (ацетилхолин).

Такое соединения как оксид азота (II) и его источники (например, нитроглицерин – лекарственное средство для снижения давления) воздействуют на гладкую мускулатуру кровеносных сосудов, обеспечивая ее расслабление и расширение сосудов в целом (приводит к снижению давления).

Пищевые источники азота

Не смотря на доступность азота для живых организмов (составляет почти 80% атмосферы нашей планеты), человеческий организм не способен усваивать азот в такой (элементарной) форме. В организм человека азот в основном поступает в составе белков, пептидов и аминокислот (растительных и животных), а также в составе таких азотсодержащих соединений, как: нуклеотиды, пурины, и др.

Дефицит азота

Как явление никогда не наблюдают дефицит азота. Поскольку организму в элементарной форме он не нужен, дефицита, соответственно, никогда и не возникает. В отличие от самого азота, дефицит веществ его содержащих (прежде всего белков) явление достаточно частое.

Причины дефицита азота

Последствия дефицита азота

Избыток азота

Как и дефицит, избыток азота как явление не наблюдается никогда – можно говорить только об избытке веществ, его содержащих. Наиболее опасно, когда азот поступает в значительных количествах в организм человека в составе токсичных веществ, например, нитратов и нитритов.

Причины избытка азота

Последствия избытка азота

Суточная потребность в азоте:

10-20 г (соответствует 60-100 г белка в сутки)

Источник

Обмен веществ в организме человека

Обмен веществ — это набор химических реакций, обеспечивающий жизнедеятельность и рост клетки. Обмен веществ — это то, что является основой живого организма, это обмен между химическим составом человека и окружающей среды.

В обменных процессах нашего организма участвуют все химические и природные элементы — белки, жиры и углеводы. Выполняя каждый свою роль — белки, создавая строительный материал, а жиры с углеводами, регулируя баланс энергетических затрат — четко и слаженно взаимодействуют друг с другом. К ним в помощь приходят минеральные вещества и витамины, которые улучшают клеточную среду.

Обмен веществ состоит из двух сторон:

Эти процессы идут параллельно и всю жизнь. Различают следующие этапы:

Процессы обмена веществ идут в организме быстро и интенсивно, хотя в организме нет высокого давления и температуры. Эта быстрота обеспечивается участием ферментов и других веществ

Роль обмена веществ:

Причины нарушения обмена веществ:

Болезни обмена веществ:

Даже сбалансировав все обменные процессы, снабдив организм недостающими витаминами, мы рискуем получить ряд серьёзных заболеваний, вызванных продуктами распада наших клеток. Продукты распада имеют всё живое и растущее, а это и есть, пожалуй, самый опасный враг для нашего здоровья. Иначе говоря, организм должен вовремя очищаться от шлаков, либо они просто начнут отравлять его. Оставаясь в избытке, продукты распада вызывают хронические болезни и замедляют работу всего организма.

При нарушениях углеводного обмена возникает тяжелое заболевание — сахарный диабет, при неправильном жировом обмене накапливается холестерин, вызывающий болезни сердца и сосудов. Свободные радикалы, которых становится в избытке, способствуют возникновению злокачественных образований.

Частым проявлением проблем с обменом веществ также является ожирение. К этой же группе также можно отнести подагру, нарушения пищеварения, некоторые формы сахарного диабета Нарушение баланса минеральных веществ и витаминов ведет к поражению мышц, костей, тяжелым нарушениям сердечнососудистой системы. У детей это может привести к очень серьезным последствиям в виде задержки роста и развития. Стоит заметить, что не всегда рекомендуется дополнительное употребление витаминов, ведь их переизбыток также может иметь негативные последствия.

Чтобы урегулировать обменные процессы в своем организме, мы должны знать, что есть некоторые вещества, препятствующие образованию шлаков и улучшающие качество обмена.

, это кислород. Оптимальное количество кислорода в тканях значительно активизирует обменные процессы.

, витамины и минералы. С возрастом все процессы замедляются, происходит частичная закупорка сосудов, поэтому важно контролировать получение достаточного количества минеральных веществ, углеводов и кислорода. Это обеспечит хорошую работу обмена клетки, так как по прошествии времени клетка высыхает и больше не получает все необходимые элементы для своей жизнедеятельности. Зная это, нам важно искусственно питать стареющие клетки.

Существует масса рекомендаций и препаратов, регулирующих обмен веществ. Правильное питание, исключение из рациона продуктов, содержащих холестерин и другие вредные вещества — ещё один путь к безупречной работе организма.

Источник

Азот в живых организмах

Ищем педагогов в команду «Инфоурок»

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Описание презентации по отдельным слайдам:

Выполнила: учитель химии и биологии ГБОУ СОШ №880 Лунина Наталия Александровна Презентация по биологии для 9 класса на тему:

Ознакомиться с азотсодержащими продуктами питания Узнать значение азота в живых организмах Рассмотреть виды и функции белков Выявить последствия дефицита и избытка азота

Белки – необходимая составная часть питания человека и животных. В желудочно-кишечном тракте они расщепляются и всасываются в виде аминокислот и низкомолекулярных пептидов, из которых организм строит свои собственные аминокислоты и белки Некоторые необходимые для жизни аминокислоты (так называемые незаменимые аминокислоты: организм человека синтезировать не способен и получает их с пищей в «готовом» виде. Аминокислота

Белки – рецепторы Все нуклеиновые кислоты – это азотосодержащие вещества ДНК, все виды РНК и АТФ Белки способные узнавать чужеродные антигены (белок гликопротеин)

ЭКСКРЕЦИЯ (выделение), выведение из организма веществ, которые образовались в процессе МЕТАБОЛИЗМА. В организме человека массой 70 кг содержится примерно 1,8 кг азота. Содержание азота в крови составляет 3077 мг/л, в волосах – 140 000–157 000 мг/кг, а в ногтях – 146 000–148 000 мг/кг. Суточное потребление азота с продуктами питания составляет 13–16 г. В белке животных и человека содержится 16 — 17% азота. В состав белков человеческого организма входят только 20 аминокислот, хотя в природе их известно около 180, причем 10 из них являются незаменимыми для человека и должны обязательно поступать в организм с животной и растительной пищей. Это интересно Это интересно

http://dic.academic.ru/dic.nsf/bse/61972/%D0%90%D0%B7%D0%BE%D1%82 Власова З.А. Биология. Справочник школьника Мамонтов, Захаров, Сонин «Биология. Общие закономерности. 9 класс» http://ruscopybook.com/biology/9_class/

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Курс повышения квалификации

Современные педтехнологии в деятельности учителя

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Курс повышения квалификации

Интерактивные технологии в обучении и воспитании

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Номер материала: 51980033132

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Около половины детей болеют коронавирусом в бессимптомной форме

Время чтения: 1 минута

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

В школе в Пермском крае произошла стрельба

Время чтения: 1 минута

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Минобразования Кузбасса рекомендовало техникумам и школам уйти на каникулы до 7 ноября

Время чтения: 1 минута

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Стартовал сбор заявок на студенческую олимпиаду «Я — профессионал»

Время чтения: 2 минуты

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

В Москве стартует онлайн-чемпионат для школьников Soft Skills — 2035

Время чтения: 1 минута

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Минпросвещения планирует прекратить прием в колледжи по 43 профессиям

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Научная электронная библиотека

в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Смотреть картинку в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Картинка про в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота. Фото в результате какого основного процесса жизнедеятельности организма осуществляется поступление азота

Колосов А. Е., Жданова О. Б., Мартусевич А. К., Ашихмин С. П.,

1.3. Краткая характеристика азотистого обмена в организме человека и млекопитающих

Азотистый обмен (АО) – совокупность химических превращений, реакций синтеза и распада азотистых соединений в организме; составная часть обмена веществ и энергии. Понятие «азотистый обмен» включает в себя белковый обмен (совокупность химических превращений в организме белков и продуктов их метаболизма), а также обмен пептидов, аминокислот, нуклеиновых кислот, нуклеотидов, азотистых оснований, азотсодержащих липидов, витаминов, гормонов и других соединений, содержащих азот.

Организм животных и человека усвояемый азот получает с пищей, в которой основным источником азотистых соединений являются белки животного и растительного происхождения. Главным фактором поддержания азотистого равновесия – состояния АО, при котором количество вводимого и выводимого азота одинаково, – служит адекватное поступление белка с пищей. Еще в СССР суточная норма белка в питании взрослого человека принята равной 100 г (или 16 г азота белка) при расходе энергии 2500 ккал.

Азотистый баланс (разность между количеством азота, который попадает в организм с пищей, и количеством азота, выводимого из организма с мочой, калом, потом) является показателем интенсивности АО в организме. Голодание или недостаточное по азоту питание приводят к отрицательному азотистому балансу, или азотистому дефициту, при котором количество азота, выводимого из организма, превышает количество азота, поступающего в организм с пищей. Положительный азотистый баланс, при котором вводимое с пищей количество азота превышает количество азота, выводимое из организма, наблюдается в период роста организма, при процессах регенерации тканей и т.д. Состояние АО в значительной степени зависит от качества пищевого белка, которое, в свою очередь, определяется его аминокислотным составом и прежде всего наличием незаменимых аминокислот.

Принято считать, что у человека и позвоночных животных АО начинается с переваривания азотистых соединений пищи в желудочно-кишечном тракте. В желудке происходит расщепление белков при участии пищеварительных протеолитических ферментов Трипсина и гастриксина с образованием полипептидов, олигопептидов и отдельных аминокислот. Из желудка пищевая масса поступает в двенадцатиперстную кишку и нижележащие отделы тонкой кишки, где пептиды подвергаются дальнейшему расщеплению, катализируемому ферментами сока поджелудочной железы трипсином, химотрипсином и карбоксипептидазой и ферментами кишечного сока аминопептидазами и дипептидазами. Наряду с пептидами, в тонкой кишке расщепляются сложные белки (например, нуклеопротеины) и нуклеиновые кислоты. Существенный вклад в расщепление азотсодержащих биополимеров вносит и микрофлора кишечника. Олигопептиды, аминокислоты, нуклеотиды, нуклеозиды и др. всасываются в тонкой кишке, поступают в кровь и с ней разносятся по всему организму. Белки тканей организма в процессе постоянного обновления также подвергаются протеолизу под действием тканевых протеаз (пептидаз и катепсинов), а продукты распада тканевых белков попадают в кровь. Аминокислоты могут быть использованы для нового синтеза белков и других соединений (пуриновых и пиримидиновых оснований, нуклеотидов, порфиринов и т.д.), для получения энергии (например, посредством включения в цикл трикарбоновых кислот) или могут быть подвергнуты дальнейшей деградации с образованием конечных продуктов АО, подлежащих выведению из организма.

Продуктом разных путей деградации аминокислот является аммиак, который может образовываться и в результате метаболизма других азотсодержащих соединений (например, при дезаминировании аденина, входящего в состав никотинамидадениндинуклеотида – НАД). Основным путем связывания и нейтрализации токсичного аммиака у уреотелических животных (животные, у которых конечным продуктом АО, является мочевина) служит так называемый цикл мочевины (синоним: орнитиновый цикл, цикл Кребса-Гензелейта), протекающий в печени. Он представляет собой циклическую последовательность ферментативных реакций, в результате которой из молекулы аммиака или амидного азота глутамина, аминогруппы аспарагановой кислоты и диоксида углерода осуществляется синтез мочевины. При ежедневном потреблении 100 г белка суточное выведение мочевины из организма составляет около 30 г. У человека и высших животных существует еще один путь нейтрализации аммиака – синтез амидов дикарбоновых кислот аспарагана и глутамина из соответствующих аминокислот. У урикотелических животных (рептилии, птицы) конечным продуктом АО является мочевая кислота.

В результате расщепления нуклеиновых кислот и нуклеопротеинов в желудочно-кишечном тракте образуются нуклеотиды и нуклеозиды. Олиго- и моно-нуклеотиды при участии различных ферментов (эстераз, нуклеотидаз, нуклеозидаз, фосфорилаз) превращаются затем в свободные пуриновые и пиримидиновые основания.

Дальнейший путь деградации пуриновых оснований аденина и гуанина состоит в их гидролитическом дезаминировании под влиянием ферментов аденазы и гуаназы с образованием соответственно гипоксантина (6-оксипурина) и ксантина (2,6-диоксипурина), которые затем превращаются в мочевую кислоту в реакциях, катализируемых ксантиноксидазой. Мочевая кислота – один из конечных продуктов АО и конечный продукт обмена пуринов у человека – выводится из организма с мочой. У большинства млекопитающих имеется фермент уриказа, который катализирует превращение мочевой кислоты в экскретируемый аллантоин.

Таким образом, разнообразные превращения важнейших азотистых соединений организма связаны между собой в единый обмен. Сложный процесс АО регулируется на молекулярном, клеточном и тканевом уровнях. Регуляция АО в целом организме направлена на приспособление интенсивности АО к изменяющимся условиям окружающей и внутренней среды и осуществляется нервной системой как непосредственно, так и путем воздействия на железы внутренней секреции.

У здоровых взрослых людей содержание азотистых соединений в органах, тканях, биологических жидкостях находится на относительно постоянном уровне. Избыток азота, поступившего с пищей, выводится с мочой и калом, а при недостатке азота в пище нужды организма в нем могут покрываться за счет использования азотистых соединений тканей тела. При этом состав мочи изменяется в зависимости от особенностей АО и состояния азотистого баланса. В норме при неизменном режиме питания и относительно стабильных условиях окружающей среды из организма выделяется постоянное количество конечных продуктов АО, а развитие патологических состояний приводит к его резкому изменению. Значительные изменения экскреции азотистых соединений с мочой, в первую очередь экскреции мочевины, могут наблюдаться и при отсутствии патологии в случае существенного изменения режима питания (например, при изменении количества потребляемого белка), причем концентрация остаточного азота в крови меняется незначительно.

При исследовании АО необходимо учитывать количественный и качественный состав принимаемой пищи, количественный и качественный состав азотистых соединений, выделяемых с мочой и калом и содержащихся в крови. Для исследования АО применяют азотистые вещества, меченные радионуклидами азота, фосфора, углерода, серы, водорода, кислорода, и наблюдают за миграцией метки и включением ее в состав конечных продуктов АО Широко используют меченые аминокислоты, например 15N-глицин, которые вводят в организм с пищей или непосредственно в кровь. Значительная часть меченого азота глицина пищи выводится в составе мочевины с мочой, а другая часть метки попадает в тканевые белки и выводится из организма крайне медленно. Проведение исследования АО необходимо для диагностики многих патологических состояний и контроля эффективности лечения, а также при разработке рациональных схем питания, в т.ч. лечебного.

Патологию АО (вплоть до клинически значимой) вызывает белковая недостаточность. Ее причиной может стать общее недоедание, продолжительный дефицит белка или незаменимых аминокислот в рационе, недостаток углеводов и жиров, обеспечивающих энергией процессы биосинтеза белка в организме. Белковая недостаточность может быть обусловлена преобладанием процессов распада белков над их синтезом не только в результате алиментарного дефицита белка и других важнейших пищевых веществ, но и при тяжелой мышечной работе, травмах, воспалительных и дистрофических процессах, ишемии, инфекции, обширных ожогах, дефекте трофической функции нервной системы, недостаточности гормонов анаболического действия (гормона роста, половых гормонов, инсулина), избыточном синтезе или избыточном поступлении извне стероидных гормонов и т.п. Нарушение усвоения белка при патологии желудочно-кишечного тракта (ускоренная эвакуация пищи из желудка, гипо- и анацидные состояния, закупорка выводного протока поджелудочной железы, ослабление секреторной функции и усиление моторики тонкой кишки при энтеритах и энтероколитах, нарушение процесса всасывания в тонкой кишке и др.) также может приводить к белковой недостаточности. Белковая недостаточность ведет к дискоординации АО и характеризуется резко выраженным отрицательным азотистым балансом.

Известны случаи нарушения синтеза определенных белков, а также генетически обусловленного синтеза аномальных белков, например при гемоглобинопатиях, миеломной болезни и др.

Патология АО, заключающаяся в нарушении обмена аминокислот, часто связана с аномалиями процесса трансаминирования: уменьшением активности аминотрансфераз при гипо- или авитаминозах В6, нарушением синтеза этих ферментов, недостатком кетокислот для трансаминирования в связи с угнетением цикла трикарбоновых кислот при гипоксии и сахарном диабете и т.д. Снижение интенсивности трансаминирования приводит к угнетению дезаминирования глутаминовой кислоты, а оно, в свою очередь, – к повышению доли азота аминокислот в составе остаточного азота крови (гипераминоацидемии), общей гиперазотемии и аминоацидурии. Гипераминоацидемия, аминоацидурия и общая азотемия характерны для многих видов патологии АО. При обширных поражениях печени и других состояниях, связанных с массивным распадом белка в организме, нарушаются процессы дезаминирования аминокислот и образования мочевины таким образом, что возрастают концентрация остаточного азота и содержание в нем азота аминокислот на фоне снижения относительного содержания в остаточном азоте азота мочевины (так называемая продукционная азотемия). Продукционная азотемия, как правило, сопровождается выведением избытка аминокислот с мочой, поскольку даже в случае нормального функционирования почек фильтрация аминокислот в почечных клубочках происходит интенсивнее, чем их реабсорбция в канальцах. Заболевания почек, обтурация мочевых путей, нарушение почечного кровообращения приводят к развитию ретенционной азотемии, сопровождающейся нарастанием концентрации остаточного азота в крови за счет повышения содержания в крови мочевины. Обширные раны, тяжелые ожоги, инфекции, повреждения трубчатых костей, спинного и головного мозга, гипотиреоз, болезнь Иценко–Кушинга и многие другие тяжелые заболевания сопровождаются аминоацидурией. Она характерна и для патологических состояний, протекающих с нарушением процессов реабсорбции в почечных канальцах: болезни Вильсона–Коновалова (гепатоцеребральная дистрофия), нефронофтизе Фанкони и др. Эти болезни относятся к многочисленным генетически обусловленным нарушениям АО. Избирательное нарушение реабсорбции цистина и цистинурия с генерализованным нарушением обмена цистина на фоне общей аминоацидурии сопровождает так называемый цистиноз. При этом заболевании кристаллы цистина откладываются в клетках ретикулоэндотелиальной системы. Наследственное заболевание фенилкетонурия характеризуется нарушением превращения фенилаланина в тирозин в результате генетически обусловленной недостаточности фермента фенилала-
нин – 4-гидроксилазы, что вызывает накопление в крови и моче непревращенного фенилаланина и продуктов его обмена – фенилпировиноградной и фенилуксусной кислот. Нарушение превращений этих соединений характерно и для вирусного гепатита.

Тирозинемию, тирозинурию и тирозиноз отмечают при лейкозах, диффузных заболеваниях соединительной ткани (коллагенозах) и других патологических состояниях. Они развиваются вследствие нарушения трансаминирования тирозина. Врожденная аномалия окислительных превращений тирозина лежит в основе алкаптонурии, при которой в моче накапливается непревращенный метаболит этой аминокислоты – гомогентизиновая кислота. Нарушения пигментного обмена при гипокортицизме связаны с угнетением превращения тирозина в меланин вследствие ингибирования фермента тирозиназы (полное выпадение синтеза этого пигмента характерно для врожденной аномалии пигментации – альбинизма).

При хроническом гепатите, сахарном диабете, остром лейкозе, хроническом миело- и лимфолейкозе, лимфогранулематозе, ревматизме и склеродермии нарушается обмен триптофана и его метаболиты 3-оксикинуренин, ксантуреновая и 3-оксиантраниловая кислоты, обладающие токсическими свойствами, накапливаются в крови. К патологии АО относятся и состояния, связанные с нарушением выделения почками креатинина и накоплением его в крови. Усиление экскреции креатинина сопровождает гиперфункцию щитовидной железы, а снижение экскреции креатинина при повышенном выведении креатина – гипотиреоз.

При массивном распаде клеточных структур (голодание, тяжелая мышечная работа, инфекции и др.) отмечают патологическое нарастание концентрации остаточного азота за счет увеличения относительного содержания в ней азота мочевой кислоты (в норме концентрация мочевой кислоты в крови не превышает 0,4 ммоль/л).

В пожилом возрасте снижаются интенсивность и объем синтеза белка за счет непосредственного угнетения биосинтетической функции организма и ослабления его способности усваивать аминокислоты пищи; развивается отрицательный азотистый баланс. Нарушения обмена пуринов у людей пожилого возраста приводят к накоплению и отложению в мышцах, суставах и хрящах солей мочевой кислоты – уратов. Коррекция нарушений АО в пожилом возрасте может быть осуществлена за счет специальных диет, содержащих полноценные животные белки, витамины и микроэлементы, с ограниченным содержанием пуринов.

Азотистый обмен у детей отличается рядом особенностей, в частности положительным азотистым балансом как необходимым условием роста. Интенсивность процессов АО на протяжении роста ребенка подвергается изменениям, особенно ярко выраженным у новорожденных и детей раннего возраста. В течение первых 3-х дней жизни азотистый баланс отрицателен, что объясняется недостаточным поступлением белка с пищей. В этот период обнаруживается транзиторное повышение концентрации остаточного азота в крови (так называемая физиологическая азотемия), иногда достигающее 70 ммоль/л; к концу 2-й нед. жизни концентрация остаточного азота снижается до уровня, отмечаемого у взрослых. Количество выделяемого почками азота нарастает в течение первых 3-х дней жизни, после чего снижается и вновь начинает увеличиваться со 2-й недели жизни параллельно возрастающему количеству пищи.

Наиболее высокая усвояемость азота в организме ребенка наблюдается у детей первых месяцев жизни. Азотистый баланс заметно приближается к равновесию в первые 3-6 мес. жизни, хотя и остается положительным. Интенсивность белкового обмена у детей достаточно высока у детей 1-го года жизни обновляется около 0,9 г белка на 1 кг массы тела в сутки, в 1-3 года –
0,8 г/кг/сут, у детей дошкольного и школьного возраста – 0,7 г/кг/сут.

Средние величины потребности в незаменимых аминокислотах, по данным ФАО ВОЗ (1985), у детей в 6 раз больше, чем у взрослых (незаменимой аминокислотой для детей в возрасте до 3 месяцев является цистин, а до 5 лет – и гистидин). Более активно, чем у взрослых, у детей протекают процессы трансаминирования аминокислот. Однако в первые дни жизни у новорожденных из-за относительно низкой активности некоторых ферментов отмечаются гипераминоацидемия и физиологическая аминоацидурия в результате функциональной незрелости почек. У недоношенных, кроме того, имеет место аминоацидурия перегрузочного типа, т.к. содержание свободных аминокислот в плазме их крови выше, чем у доношенных детей. На первой неделе жизни азот аминокислот составляет 3-4 % общего азота мочи (по некоторым данным – до 10 %), и лишь к концу 1-го года жизни его относительное содержание снижается до 1 %. У детей 1-го года жизни выведение аминокислот в расчете на 1 кг массы тела достигает величин выведения их у взрослого человека, экскреция азота аминокислот, достигающая у новорожденных 10 мг/кг массы тела, на 2-м году жизни редко превышает 2 мг/кг массы тела. В моче новорожденных повышено (по сравнению с мочой взрослого человека) содержание таурина, треонина, серина, глицина, аланина, цистина, лейцина, тирозина, фенилаланина и лизина. В первые месяцы жизни в моче ребенка обнаруживаются также этаноламин и гомоцитруллин. В моче детей 1-го года жизни преобладают аминокислоты пролин и [гидр]оксипролин.

Исследования важнейших азотистых компонентов мочи у детей показали, что соотношение мочевой кислоты, мочевины и аммиака в процессе роста существенно изменяется. Так, первые 3 мес. жизни характеризуются наименьшим содержанием в моче мочевины (в 2–3 раза меньше, чем у взрослых) и наибольшей экскрецией мочевой кислоты. Дети в первые три месяца жизни выделяют 28,3 мг/кг массы тела мочевой кислоты, а взрослые – 8,7 мг/кг. Относительно высокая экскреция у детей первых месяцев жизни мочевой кислоты способствует иногда развитию мочекислого инфаркта почек. Количество мочевины в моче нарастает у детей в возрасте от 3 до 6 месяцев, а содержание мочевой кислоты в это время снижается. Содержание аммиака в моче детей в первые дни жизни невелико, но затем резко возрастает и держится на высоком уровне на протяжении всего 1-го года жизни.

Характерной особенностью АО у детей является физиологическая креатинурия. Креатин обнаруживается еще в амниотической жидкости; в моче он определяется в количествах, превышающих содержание креатина в моче взрослых, начиная с периода новорожденности и до периода полового созревания. Суточная экскреция креатинина (дегидроксилированного креатина) с возрастом увеличивается, в то же время по мере нарастания массы тела ребенка относительное содержание азота креатинина мочи снижается. Количество креатинина, выводимого с мочой за сутки, у доношенных новорожденных составляет 10-13 мг/кг, у недоношенных – 3 мг/кг, у взрослых не превышает 30 мг/кг.

При выявлении в семье врожденного нарушения АО необходимо проведение медико-генетического анализа.

1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М., 1982. – С. 431.

2. Вельтищев Ю.Е. с соавт. Обмен веществ у детей. М., 1983. – С. 53,

3. Дудел Дж. с соавт. Физиология человека / пер. с англ. – М., 1985. – т. 1-4.

4. Зилва Дж.Ф., Пэннелл П.Р. Клиническая химия в диагностике и лечении / пер. с англ. – М., 1988. – С. 298-398.

5. Кон Р.М., Рой К.С. Ранняя диагностика болезней обмена веществ / пер. с англ. – М., 1986. – С. 211.

6. Лабораторные методы исследования в клинике / под ред. В.В. Меньшикова. – М., 1987. – С. 222.

7. Ленинджер А. Основы биохимии / пер. с англ. М., 1985. – Т. 2.

8. Мазурин А.В., Воронцов И.М. Пропедевтика детских болезней. М., 1985. – С. 322.

9. Руководство по педиатрии / под. ред. У.Е. Бермана и В.К. Вогана: пер. с англ. – М., 1987. – кн. 2. – С. 337

10. Страйер Л. Биохимия / пер. с англ. – М., 1985. – т. 2. – С. 233.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *