Вакуум: основные понятия, определения и типы вакуума
Вакуум понятие относительное. Учеными доказано, что абсолютного вакуума не существует. Есть несколько понятий вакуума и его интерпретаций.
Что такое вакуум
Ва́куум с латинского «vacuum» обозначает пустой, т.е. это пустое пространство. Но создать пустое пространство невозможно. Поэтому принято считать вакуумом объем, в котором почти нет никаких веществ. Количество молекул в вакууме находится в таком небольшом количестве, что может достигать нескольких десятков.
Из-за малого количество молекул, их внутренняя энергия или импульсы стремятся к нулю. Поэтому считается, что в вакууме практически отсутствуют различные процессы, такие как электрический ток, трение и прочее.
В физике ва́куум – это пространство с газом, давление которого ниже атмосферного давления. Другими словами, это разряжение.
Качество вакуума или его глубина измеряется давлением. А точнее, отношением длины свободного пробега частицы к линейным размерам емкости, в которой он создан. С увеличением степени разряжения уменьшается число столкновений молекул в пространстве. Длина свободного пробега частиц увеличивается и зависит только от размеров сосуда, со стенками которого они сталкиваются. Следовательно, вакуумом можно назвать состояние, когда частицы газа, находясь в определенном объеме, не соприкасаются друг с другом.
Основная единица измерения вакуумного давления – Па. Но паскаль достаточно большая величина для измерения разряжения, поэтому в физике часто используются другие величины, такие как бар, мм.рт.ст., торр, физическая атмосфера.
Единицы измерения производительности и давления вакуумных насосов
При подборе вакуумного насоса наши партнеры часто используют специфические единицы измерения производительности и остаточного давления насосов.
Так кому-то привычней оперировать литрами в секунду, кому-то кубическими метрами в час или минуту. Кто-то привык измерять давление в атмосферах, а кому-то привычней милливольты, Паскали или Бары.
Специалисты «СЛЭМЗ» составили таблицы основных показателей вакуумных насосов АВЗ, водокольцевых насосов ВВН, пластинчато-роторных НВР: производительность и предельное остаточное давление. Также вы найдете таблицу перевода самых популярных единиц измерения давления.
Производительность или быстродействие вакуумного насоса определяет допустимые объемы, в которых может создаваться паспортное разрежение. Неправильно подобранный по производительности агрегат будет перегреваться, разбрызгивать уплотняющую жидкость, заклинивать либо же просто работать неэффективно.
Остаточное давление принято измерять в Паскалях, Барах, миллиметрах ртутного столба и атмосферах. При работе с аналоговыми вакуумметрами используется условная шкала от нуля до «минус единицы»
Основные параметры АВЗ и НВЗ
Глубина вакуума
Модель
Быстродействие
Паскали
Бары
kgf/cm 2
мм. рт. ст.
атмосферы
м 3 /час
м 3 /мин
л/с
л/мин
1,1
0.000011
0.000011
0.0083
0.000011
АВЗ-20Д (НВЗ-20)
72
1,2
20
1200
6,7
0.000067
0.000068
0,05
0.000068
АВЗ-63Д
227
3,783
63
3780
6,7
0.000067
0.000068
0,05
0.000068
АВЗ-90
324
5,4
90
5400
6,7
0.000067
0.000068
0,05
0.000068
АВЗ-125Д
450
7,5
125
7500
6,7
0.000067
0.000068
0,05
0.000068
АВЗ-180
648
10,8
180
10800
Производительность и остаточное давление ВВН
Единицы измерения вакуума
Модель
Быстродействие
Паскали
Бары
kgf/cm 2
мм. рт. ст.
атмосферы
м 3 /час
м 3 /мин
л/с
л/мин
20000
0,2
0,2
200
0,2
ВВН1-0,75
45
0,75
12,5
750
40000
0,4
0,41
300
0,41
ВВН1-1,5
90
1,5
25
1500
40000
0,4
0,41
300
0,41
ВВН1-3
198
3,3
55
3300
40000
0,4
0,41
300
0,41
ВВН1-6
372
6,2
103,3
6198
40000
0,4
0,41
300
0,41
ВВН1-12
720
12
200
12000
40000
0,4
0,41
300
0,41
ВВН1-25
1500
25
416,6
24996
40000
0,4
0,41
300
0,41
ВВН2-50М
3000
50
833,3
49998
Быстродействие и глубина вакуумных насосов НВР
Давление вакуума в
Модель
Быстродействие
Паскали
Бары
kgf/cm2
мм. рт. ст
атмосферы
м3/час
м3/мин
л/с
л/мин
1,1
0.000011
0.000011
0.0083
0.000011
3НВР-1Д (НВР-1,25)
4,5
0,075
1,25
75
6,7
0.000067
0.000068
0,05
0.000068
2НВР-5ДМ
19,6
0,3267
5,5
330
6,7
0.000067
0.000068
0,05
0.000068
НВР-16ДМ
60
1
16,6
996
6,7
0.000067
0.000068
0,05
0.000068
2НВР-90Д
90
1,5
25
1500
Таблица перевода единиц измерения вакуума (давления)
Таблица соответствия единиц измерения глубины вакуума помогает быстрее переводить паспортные показатели насосов в привычные Вам единицы измерения: Паскали в Бары, Атмосферы либо кгс/см 2
Единицы измерения глубины вакуума
Теперь вы можете подобрать вакуумный насос под специфику техпроцесса, оперируя производительностью и остаточным давлением в любых единицах измерения.
Если у вас остались вопросы, звоните — менеджеры СЛЭМЗ подробно расскажут об единицах измерения вакуума и помогут с выбором!
Очень часто к нам обращаются люди, которые хотят купить вакуумный насос, но слабо представляют, что такое вакуум. Попытаемся разобраться, что же это такое.
Рассмотрим на примере, что такое вакуум и как его измеряют. На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погоды, высоты на уровнем моря, но мы не будем принимать это во внимание, так как это не будет никак влиять на понимание понятия вакуум. Итак, мы имеем давление на поверхности земли равное 1 атмосфере. Всё, что ниже 1 атмосферы (в закрытом сосуде), называется техническим вакуумом.
Возьмём некий сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнём откачивать из сосуда воздух, то в нём возникнет разряжение, которое и называется вакуумом. Рассмотрим на примере: в левом сосуде 10 кружочков. Пусть это будет 1 атмосфера. «откачаем» половину – получим 0,5 атм, оставим один – получим 0,1 атм.
На картинке показаны вакуумметры с различными шкалами, которые показывают одинаковый вакуум:
Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.
На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы). Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.
Теперь несколько слов о том, как многие клиенты измеряют вакуум на выставке ООО «Насосы Ампика», у нас в офисе: включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.
Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100. После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).
В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.
Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S. По-простому – это сила, распределённая по площади поверхности. Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S). Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2). Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2). То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении). Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс. Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).
Как посчитать силу прижима какой-либо детали к поверхности? Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще. Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.
Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН. Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм. 1 атмосфера равна 1 кг/см2. Площадь поверхности детали – 100 см2 (10см х10 см). То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг. Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг. Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п. Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.
Теперь пару слов о механических вакуумметрах. Эти устройства показывают остаточное давление в пределах 0,05…1 атм. То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр, например VG-64.
Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух. Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым? Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.
Вакуум у одноступенчатого насоса 20 Па, у двухступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее. Но так ли это на самом деле?
1 атм = 100000 Па = 1 кг/см2. Значит разница в прижиме плёнки при вакууме 20 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).
То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.
Как рассчитать за какое время вакуумный насос откачает вакуумную камеру? В отличии от жидкостей, газы занимают весь имеющийся объем и если вакуумный насос откачал половину воздуха, находящегося в вакуумной камере, то оставшаяся часть воздуха вновь расширится и займет весь объем. Ниже приведена формула для вычисления этого параметра.
В двух словах, это всё. Надеемся, что кому-нибудь эта информация поможет сделать правильный выбор вакуумного оборудования и блеснуть знаниями за кружкой пива.
Информация о вакуумных системах и компонентах: понятие вакуума, примеры использования
Общая информация: понятие вакуума и единицы измерения
Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м 2 ). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.
Уровни вакуума
В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:
Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.
— Низкий вакуум: в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.
Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.
Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.
Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.
Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.
Очень часто к нам обращаются люди, которые хотят купить вакуумный насос, но слабо представляют, что такое вакуум. Попытаемся разобраться, что же это такое.
По определению, вакуум – это пространство, свободное от вещества (от латинского слова «vacuus» — пустой). Существует несколько определений вакуума: технический вакуум, физический вакуум, космический вакуум и т.д. Мы будем рассматривать технический вакуум, который определяется как сильно разреженный газ.
Рассмотрим на примере, что такое вакуум и как его измеряют. На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погоды, высоты на уровнем моря, но мы не будем принимать это во внимание, так как это не будет никак влиять на понимание понятия вакуум. Итак, мы имеем давление на поверхности земли равное 1 атмосфере. Всё, что ниже 1 атмосферы (в закрытом сосуде), называется техническим вакуумом.
Возьмём некий сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнём откачивать из сосуда воздух, то в нём возникнет разряжение, которое и называется вакуумом. Рассмотрим на примере: в левом сосуде 10 кружочков. Пусть это будет 1 атмосфера. «откачаем» половину – получим 0,5 атм, оставим один – получим 0,1 атм.
Так как в сосуде всего одна атмосфера, то и максимально возможный вакуум мы можем получить (теоретически) ноль атмосфер. «Теоретически» — т.к. выловить все молекулы воздуха из сосуда практически невозможно. По этому, в любом сосуде, из которого откачали воздух (газ) всегда остается какое-то его минимальное количество. Это и называют «остаточным давлением», то есть давление, которое осталось в сосуде после откачки из него газов. Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но всё равно не до нуля. В обычной жизни редко когда требуется вакуум глубже 0,5 — 10 Па (0,00005-0,0001 атм).
На картинке показаны вакуумметры с различными шкалами, которые показывают одинаковый вакуум:
Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.
На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы). Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.
Теперь несколько слов о том, как многие клиенты измеряют вакуум на выставке ООО «Насосы Ампика», у нас в офисе: включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.
Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100. После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).
В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.
Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S. По-простому – это сила, распределённая по площади поверхности. Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S). Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2). Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2). То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении). Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс. Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).
Как посчитать силу прижима какой-либо детали к поверхности? Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще. Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.
Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН. Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм. 1 атмосфера равна 1 кг/см2. Площадь поверхности детали – 100 см2 (10см х10 см). То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг. Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг. Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п. Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.
Теперь пару слов о механических вакуумметрах. Эти устройства показывают остаточное давление в пределах 0,05…1 атм. То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр, например VG-64.
Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух. Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым? Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.
Вакуум у одноступенчатого насоса 20 Па, у двухступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее. Но так ли это на самом деле?
1 атм = 100000 Па = 1 кг/см2. Значит разница в прижиме плёнки при вакууме 20 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).
То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.
Как рассчитать за какое время вакуумный насос откачает вакуумную камеру? В отличии от жидкостей, газы занимают весь имеющийся объем и если вакуумный насос откачал половину воздуха, находящегося в вакуумной камере, то оставшаяся часть воздуха вновь расширится и займет весь объем. Ниже приведена формула для вычисления этого параметра.
t — время (в часах) необходимое для откачки вакуумного объема от давления p1 до давления p2 V — объем откачиваемой емкости, м3 S — быстрота действия вакуумного насоса, м3/час p1 — начальное давление в откачиваемой емкости, мбар p2 — конечное давление в откачиваемой емкости, мбар ln — натуральный логарифм
F — поправочный коэффициент, зависит от конечного давления в емкости p2: — p2 от 1000 до 250 мбар F=1 — p2 от 250 до 100 мбар F=1,5 — p2 от 100 до 50 мбар F=1,75 — p2 от 50 до 20 мбар F=2 — p2 от 20 до 5 мбар F=2,5 — p2 от 5 до 1 мбар F=3
В двух словах, это всё. Надеемся, что кому-нибудь эта информация поможет сделать правильный выбор вакуумного оборудования и блеснуть знаниями за кружкой пива.
Понятие вакуума и единицы измерения
Термин «вакуум«, как физическое явление — среда, в которой давление газа ниже атмосферного давления.
Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м 2 ). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.
Уровни вакуума
В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:
Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.
— Низкий вакуум: в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.
Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.
Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.
Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.
Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.
Примеры применения вакуума в промышленности
Вакуумные системы множественного захвата «ОКТОПУС»
Захват металлических листов, стекла, мрамора, дерева и т.д. при помощи вакуумных присосок
Перемещение гранул порошка, жидкостей и т.п.
Фиксированная дозировка объема
Захват яиц вакуумными присосками
Перемещение и маркировка с помощью присосок
Открытие пакетов с помощью присосок. Упаковочный датчик
Вакуумные цилиндры для отслаивания
Вакуумное формование полимеров
Вакуумные присоски — общая информация
Вакуумные присоски незаменимый инструмент для захвата, подъёма и перемещения предметов, листов и различных объектов, которые трудно перемещать обычными системами, из-за их хрупкости или риска деформации.
При правильном применении присоски обеспечивают удобство, экономичность и безопасность работы, что является фундаментальным принципом для идеальной реализации проектов автоматизации на производстве.
Продолжительные исследования и внимание к требованиям наших клиентов, позволили нам производить присоски выдерживающие высокие и низкие температуры, абразивный износ, электростатические разряды, агрессивные среды, а так же не оставляют пятен на поверхности переносимых предметов. Помимо этого, присоски соответствуют стандартам безопасности EEC и пищевым стандартам FDA, BGA, TSCA.
Все присоски изготавливаются из высококачественных компонентов методом вакуумного формования и подвергаются антикоррозионной обработке для долгого срока службы. Независимо от конфигурации, все присоски имеют свою маркировку.
Система множественного захвата Октопус
При подборе вакуумного насоса наши партнеры часто используют специфические единицы измерения производительности и остаточного давления насосов.
Так кому-то привычней оперировать литрами в секунду, кому-то кубическими метрами в час или минуту. Кто-то привык измерять давление в атмосферах, а кому-то привычней милливольты, Паскали или Бары.
Специалисты «СЛЭМЗ» составили таблицы основных показателей вакуумных насосов АВЗ, водокольцевых насосов ВВН, пластинчато-роторных НВР: производительность и предельное остаточное давление. Также вы найдете таблицу перевода самых популярных единиц измерения давления.
Производительность или быстродействие вакуумного насоса определяет допустимые объемы, в которых может создаваться паспортное разрежение. Неправильно подобранный по производительности агрегат будет перегреваться, разбрызгивать уплотняющую жидкость, заклинивать либо же просто работать неэффективно.
Остаточное давление принято измерять в Паскалях, Барах, миллиметрах ртутного столба и атмосферах. При работе с аналоговыми вакуумметрами используется условная шкала от нуля до «минус единицы»
Основные параметры АВЗ и НВЗ
Глубина вакуума
Модель
Быстродействие
Паскали
Бары
kgf/cm 2
мм. рт. ст.
атмосферы
м 3 /час
м 3 /мин
л/с
л/мин
1,1
0.000011
0.000011
0.0083
0.000011
АВЗ-20Д (НВЗ-20)
72
1,2
20
1200
6,7
0.000067
0.000068
0,05
0.000068
АВЗ-63Д
227
3,783
63
3780
6,7
0.000067
0.000068
0,05
0.000068
АВЗ-90
324
5,4
90
5400
6,7
0.000067
0.000068
0,05
0.000068
АВЗ-125Д
450
7,5
125
7500
6,7
0.000067
0.000068
0,05
0.000068
АВЗ-180
648
10,8
180
10800
Производительность и остаточное давление ВВН
Единицы измерения вакуума
Модель
Быстродействие
Паскали
Бары
kgf/cm 2
мм. рт. ст.
атмосферы
м 3 /час
м 3 /мин
л/с
л/мин
20000
0,2
0,2
200
0,2
ВВН1-0,75
45
0,75
12,5
750
40000
0,4
0,41
300
0,41
ВВН1-1,5
90
1,5
25
1500
40000
0,4
0,41
300
0,41
ВВН1-3
198
3,3
55
3300
40000
0,4
0,41
300
0,41
ВВН1-6
372
6,2
103,3
6198
40000
0,4
0,41
300
0,41
ВВН1-12
720
12
200
12000
40000
0,4
0,41
300
0,41
ВВН1-25
1500
25
416,6
24996
40000
0,4
0,41
300
0,41
ВВН2-50М
3000
50
833,3
49998
Быстродействие и глубина вакуумных насосов НВР
Давление вакуума в
Модель
Быстродействие
Паскали
Бары
kgf/cm2
мм. рт. ст
атмосферы
м3/час
м3/мин
л/с
л/мин
1,1
0.000011
0.000011
0.0083
0.000011
3НВР-1Д (НВР-1,25)
4,5
0,075
1,25
75
6,7
0.000067
0.000068
0,05
0.000068
2НВР-5ДМ
19,6
0,3267
5,5
330
6,7
0.000067
0.000068
0,05
0.000068
НВР-16ДМ
60
1
16,6
996
6,7
0.000067
0.000068
0,05
0.000068
2НВР-90Д
90
1,5
25
1500
Таблица перевода единиц измерения вакуума (давления)
Таблица соответствия единиц измерения глубины вакуума помогает быстрее переводить паспортные показатели насосов в привычные Вам единицы измерения: Паскали в Бары, Атмосферы либо кгс/см 2
Теперь вы можете подобрать вакуумный насос под специфику техпроцесса, оперируя производительностью и остаточным давлением в любых единицах измерения.
Если у вас остались вопросы, звоните — менеджеры СЛЭМЗ подробно расскажут об единицах измерения вакуума и помогут с выбором!