как уменьшить глутамат в мозге
Глутамат
В тканях мозга глутамат обнаруживается в больших концентрациях, чем дофамин и серотонин. Глутамат выявлен почти в 40% терминалей синапсов нейронов мозга, включая все кортикальные пирамидальные нейроны и нейроны таламуса, при этом его основную часть не принято считать нейротрансмиттером. Однако глутамат в то же время является основным медиатором, регулирующим и активирующим процессы возбуждения у млекопитающих.
В пирамидных нейронах глутамат первоначально образуется из глутамина при помощи активируемой фосфатом фермента глутаминазы.
Большая часть глутамата, высвобождаемая нейронами, захватывается глиальными клетками и превращается здесь в глутамин, который затем вновь возвращается в нейроны, превращаясь в глутамат.
Глутаминовая кислота регулирует пластичность синапсов, рост и развитие нейронов, принимает участие в процессах запоминания, обучения и регуляции движений.
Проекции глутаматергической системы обнаруживаются в базальных ганглиях и лимбической системе.
Рецепторы, чувствительные к глутамату, делятся на два типа: ионотропные и метаботропные.
Рецепторы глутамата
Ионотропные рецепторы дифференцируются на основе их чувствительности к синтетическому деривату глутамата NMDA, AMPA (альфа-амино 3-гидрокси-5-метил-4-изоксизолепропионовая кислота) и каинату.
Метаботропные рецепторы (G-протеин) принимают участие в регуляции нейромодулирующего эффекта глутамата.
Одним из основных рецепторов глутамата, представляющих ее центральный компонент глутаматергической системы, считается NMDA-рецептор.
Согласно современным представлением, NMDA-рецептор принимает участие в механизме галлюцинаторного эффекта, спровоцированного интоксикацией фенциклидином.
Дисфункция глутаматергической системы
Глутаматергическая система оказывает тормозящее влияние на дофаминергическую систему и сложное, чаще активирующее, действие на активность серотонинергических нейронов, в частности, выполняя роль возбуждающего медиатора лимбической коры. В свою очередь, дофаминергическая система оказывает влияние на активность глутаматергической системы в стриатуме и кортексе. Напомним, что дофаминергическая система активируется глутаматергической системой и тормозится через промежуточные соединения ГАМК-ергической системы.
![]() | Для выявления влияния нейромедиаторов на развитие шизофрении необходимо проводить лабораторные обследования пациентов |
Эти нейротрансмиттерные системы с помощью сложных механизмов взаимодействуют между собой, обеспечивая при этом оптимальное функционирование нейрональных сетей лобно-височно-таламических областей мозга. Сбой в глутаматергической системе, например, вследствие регулярного приема каннабисса, искажает взаимодействие других систем нейромедиаторов, в частности, проявляясь синдромом гиперактивности дофаминергической системы, который, как известно, характеризуется продуктивной психотической симптоматикой.
По мнению некоторых исследователей, «дофаминовый эндофенотип шизофрении» как бы вторично способен на протяжении длительного времени вызывать гипофункцию NMDA-системы и ухудшать трансмиссию этого медиатора. Непрерывное усиление активности глутаматергической системы приводит к уменьшению синтеза синаптических протеинов, тем самым понижая жизнеспособность нейронов. При этом они не погибают, но функционируют как бы в в ослабленном режиме.
Специфичный транспортер неорганического фосфора локализован избирательно на терминалях глутаматергических нейронов.
Роль глутаминовой кислоты в патогенезе шизофрении стала интересовать исследователей после обнаружения глутамат антагонистических эффектов у некоторых препаратов (фенциклидин, кетамин ) (Chen G., Weston J., 1960). Интерес к глутамату заметно усилился после выяснения роли, так называемых «генов риска шизофрении»: дисбендина и нейрегулина в системе, охраняющей рецепторы глутамата.
В дальнейшем, при шизофрении было обнаруженно значительное ослабление активности глутаматергической системы в области фронтальной коры, что, предположительно, могло вести к снижению активности глутаматергической передачи, нарушению структуры рецепторов NМДА, расположенных на кортиколимбических ГАМК-ергических нейронах. Предполагалось, что сдерживающая сторона глутамата, регулирующего активность нейротрансмиттеров, при этом слабела и в конечном итоге способоствовала увеличению выброса дофамина.
Многие исследователи отмечают, что при шизофрении изменения глутаматной системы затрагивают транспорт и метаболизм глутамата.
Уровень глутамата снижен в спинномозговой жидкости больных шизофренией.
Магнитно-резонансная спектроскопия обнаружила снижение глутаматной активности в пирамидальных нейронах префронтальной области коры мозга. Некоторые изменения, обнаруженные в структурах мозга больных шизофренией, отражаются в тромбоцитах периферической крови, в которых обнаружены компоненты глутаматной системы, в частности, ферменты метаболизма глутамата: белок, подобный глутаматсинтетазе и глутаматдегидрогеназа.
В исследовании Г.Ш. Бурбаевой. с соавт. (2007) была выявлена достоверная положительная корреляция количества белка, подобного глутамитсинтетазе с баллами по шкале PANSS негативной симптоматики, особенно по таким симптомам, как плохая коммуникабельность, притупленный аффект, эмоциональная отгороженность и отрицательная корреляция с возбуждением и выраженностью идей величия. Ученые также выявили наличие положительной корелляции между выраженностью эмоциональной отгороженности и количеством глутаматдегидрогеназы. На основании результатов исследования был сделан вывод, что количество белка, подобного глутаматсинтетазе, в тромбоцитах дает возможность предсказать эффективность терапии антипсихотиками в отношении негативной симптоматики.
В настоящее время теорию токсикоза связывают с нарушением активности рецепторов глутаматной системы.
М.Я. Серейский (1941), И.Г. Равкин (1956), С.Г. Жислин (1965) в своей токсико — гипоксической теории патогенеза шизофрении, придавали важное значение тканевой гипоксии мозга, недостаточности его кровоснабжения, особенно характерной для кататонии. В данной теории существенное значение уделялось исследованию тканевой гипоксии, окислительным процессам тканей мозга, изменению углеводного-фосфорного обмена, нарушению общего обмена.
Ранее предполагали, что при шизофрении имеют место патология со стороны азотистого обмена и нарушение ферментативных процессов в ЦНС. К развитию токсического процесса и гипоксии, по его мнению, могут привести соматические болезни, инфекционные, эндокринные нарушения, травмы черепа, наследственные заболевания и даже психогенные травмы.
Отметим, что обменные процессы при шизофрении также изучали отечественные психиатры Л.И. Ландо, А.Е. Кульков и др.
Современная гипотеза внешнего токсикоза является одной из наиболее популярных теорий патогенеза шизофрении. Согласно данной теории, в условиях токсикоза нормальный процесс трансмиссии между нейронами нарушается. Вместо обычного процесса возбуждения складывается ситуация «смертельно возбужденных нейронов», которую невозможно контролировать. Включения механизма возбуждения как бы не вовремя или без адекватного контроля приводит к тому, что важные синапсы или даже целые группы нейронов разрушаются, что проявляется дегенерацией нервной ткани (Stahl S., 2001).
Полагают, что экзотоксический процесс запускается патологическим процессом, вызывающим избыточную глутаматную активность. Это приводит к чрезмерному открытию кальциевых каналов с последующим отравлением клетки избыточным количеством кальция и образованию свободных радикалов. Последние атакуют клетку, негативно воздействуя на ее мембрану и органеллы, в конечном счете разрушая ее (Stahl S., 2001). Подтипом глутаматного рецептора, опосредующего дегенеративное экзотоксическое отравление, считается подтип NМДА (Н-метил-D-аспартат).
В последнее время американские ученые университета в Балтиморе предложили новую патофизиологическую модель шизофрении, построенную на основе эффекта кетамина (анестетик, широко применяющийся в стоматологии) и фенциклидина на NMDA-рецепторы. Фенциклидин и кетамин являются антагонистами этих рецепторов. Они блокируют ионные каналы (некоторые исследователи полагают, что в качестве вторичных внутриклеточных посредников действия глутамата выступают ионы кальция) и могут вызывать изменение восприятия и когнитивные нарушения, напоминающие симптоматику шизофрении.
![]() | Узнайте больше о симптомах шизофрении |
С помощью ПЭТ (позитронно-эмиссионная томография) было обнаружено, что кетамин увеличивает объем регионарного мозгового кровотока в передней поясной коре и уменьшает кровоток в гиппокампе и мозжечке. Создается впечатление, что гипоглутаматергическое состояние первоначально развивавается в гиппокампе. Это угнетает передачу возбуждающих импульсов в область передней поясной извилины и височной коры. Интересно отметить, что носители гаплотипа риска шизофрении, в частности, нейрегулина 1, как правило, отличаются небольшими размерами гиппокампа. По мнению F. Ebner et al., (2006) осложнения, разививающиеся во время беременности и родов, могут также способствовать уменьшению объема гиппокампа, что увеличивает риск развития шизофрении.
Имеются сведения об увеличении в мозге больных шизофренией числа NMDА. Изменения обнаруживаются в некоторых кортикальных образованиях, включая префронтальную кору могут свидетельствовать об ослаблениие их иннервации глутаматом. Возможно, это ослабление cвязано как с морфологическими, так и функциональными изменениями в данной области коры мозга.
Препараты, блокирующие кальциевые электроуправляемые каналы, эффективны при патологическом возбуждении, но при этом они практически не влияют на электрическую активность нейронов.
С терапевтической точки зрения, представляет интерес эффективность агонистов глутаматных рецепторов (глицин, циклосерин, особенно в отношении негативной симптоматики, наблюдающейся в процессе терапии шизофрении этими препаратами (Deakin J., 2000; Tuominen H. et al., 2005; Carpenter W. et al., 2005).
Глутамат
В тканях мозга глутамат обнаруживается в больших концентрациях, чем дофамин и серотонин. Глутамат выявлен почти в 40% терминалей синапсов нейронов мозга, включая все кортикальные пирамидальные нейроны и нейроны таламуса, при этом его основную часть не принято считать нейротрансмиттером. Однако глутамат в то же время является основным медиатором, регулирующим и активирующим процессы возбуждения у млекопитающих.
В пирамидных нейронах глутамат первоначально образуется из глутамина при помощи активируемой фосфатом фермента глутаминазы.
Большая часть глутамата, высвобождаемая нейронами, захватывается глиальными клетками и превращается здесь в глутамин, который затем вновь возвращается в нейроны, превращаясь в глутамат.
Глутаминовая кислота регулирует пластичность синапсов, рост и развитие нейронов, принимает участие в процессах запоминания, обучения и регуляции движений.
Проекции глутаматергической системы обнаруживаются в базальных ганглиях и лимбической системе.
Рецепторы, чувствительные к глутамату, делятся на два типа: ионотропные и метаботропные.
Рецепторы глутамата
Ионотропные рецепторы дифференцируются на основе их чувствительности к синтетическому деривату глутамата NMDA, AMPA (альфа-амино 3-гидрокси-5-метил-4-изоксизолепропионовая кислота) и каинату.
Метаботропные рецепторы (G-протеин) принимают участие в регуляции нейромодулирующего эффекта глутамата.
Одним из основных рецепторов глутамата, представляющих ее центральный компонент глутаматергической системы, считается NMDA-рецептор.
Согласно современным представлением, NMDA-рецептор принимает участие в механизме галлюцинаторного эффекта, спровоцированного интоксикацией фенциклидином.
Дисфункция глутаматергической системы
Глутаматергическая система оказывает тормозящее влияние на дофаминергическую систему и сложное, чаще активирующее, действие на активность серотонинергических нейронов, в частности, выполняя роль возбуждающего медиатора лимбической коры. В свою очередь, дофаминергическая система оказывает влияние на активность глутаматергической системы в стриатуме и кортексе. Напомним, что дофаминергическая система активируется глутаматергической системой и тормозится через промежуточные соединения ГАМК-ергической системы.
![]() | Для выявления влияния нейромедиаторов на развитие шизофрении необходимо проводить лабораторные обследования пациентов |
Эти нейротрансмиттерные системы с помощью сложных механизмов взаимодействуют между собой, обеспечивая при этом оптимальное функционирование нейрональных сетей лобно-височно-таламических областей мозга. Сбой в глутаматергической системе, например, вследствие регулярного приема каннабисса, искажает взаимодействие других систем нейромедиаторов, в частности, проявляясь синдромом гиперактивности дофаминергической системы, который, как известно, характеризуется продуктивной психотической симптоматикой.
По мнению некоторых исследователей, «дофаминовый эндофенотип шизофрении» как бы вторично способен на протяжении длительного времени вызывать гипофункцию NMDA-системы и ухудшать трансмиссию этого медиатора. Непрерывное усиление активности глутаматергической системы приводит к уменьшению синтеза синаптических протеинов, тем самым понижая жизнеспособность нейронов. При этом они не погибают, но функционируют как бы в в ослабленном режиме.
Специфичный транспортер неорганического фосфора локализован избирательно на терминалях глутаматергических нейронов.
Роль глутаминовой кислоты в патогенезе шизофрении стала интересовать исследователей после обнаружения глутамат антагонистических эффектов у некоторых препаратов (фенциклидин, кетамин ) (Chen G., Weston J., 1960). Интерес к глутамату заметно усилился после выяснения роли, так называемых «генов риска шизофрении»: дисбендина и нейрегулина в системе, охраняющей рецепторы глутамата.
В дальнейшем, при шизофрении было обнаруженно значительное ослабление активности глутаматергической системы в области фронтальной коры, что, предположительно, могло вести к снижению активности глутаматергической передачи, нарушению структуры рецепторов NМДА, расположенных на кортиколимбических ГАМК-ергических нейронах. Предполагалось, что сдерживающая сторона глутамата, регулирующего активность нейротрансмиттеров, при этом слабела и в конечном итоге способоствовала увеличению выброса дофамина.
Многие исследователи отмечают, что при шизофрении изменения глутаматной системы затрагивают транспорт и метаболизм глутамата.
Уровень глутамата снижен в спинномозговой жидкости больных шизофренией.
Магнитно-резонансная спектроскопия обнаружила снижение глутаматной активности в пирамидальных нейронах префронтальной области коры мозга. Некоторые изменения, обнаруженные в структурах мозга больных шизофренией, отражаются в тромбоцитах периферической крови, в которых обнаружены компоненты глутаматной системы, в частности, ферменты метаболизма глутамата: белок, подобный глутаматсинтетазе и глутаматдегидрогеназа.
В исследовании Г.Ш. Бурбаевой. с соавт. (2007) была выявлена достоверная положительная корреляция количества белка, подобного глутамитсинтетазе с баллами по шкале PANSS негативной симптоматики, особенно по таким симптомам, как плохая коммуникабельность, притупленный аффект, эмоциональная отгороженность и отрицательная корреляция с возбуждением и выраженностью идей величия. Ученые также выявили наличие положительной корелляции между выраженностью эмоциональной отгороженности и количеством глутаматдегидрогеназы. На основании результатов исследования был сделан вывод, что количество белка, подобного глутаматсинтетазе, в тромбоцитах дает возможность предсказать эффективность терапии антипсихотиками в отношении негативной симптоматики.
В настоящее время теорию токсикоза связывают с нарушением активности рецепторов глутаматной системы.
М.Я. Серейский (1941), И.Г. Равкин (1956), С.Г. Жислин (1965) в своей токсико — гипоксической теории патогенеза шизофрении, придавали важное значение тканевой гипоксии мозга, недостаточности его кровоснабжения, особенно характерной для кататонии. В данной теории существенное значение уделялось исследованию тканевой гипоксии, окислительным процессам тканей мозга, изменению углеводного-фосфорного обмена, нарушению общего обмена.
Ранее предполагали, что при шизофрении имеют место патология со стороны азотистого обмена и нарушение ферментативных процессов в ЦНС. К развитию токсического процесса и гипоксии, по его мнению, могут привести соматические болезни, инфекционные, эндокринные нарушения, травмы черепа, наследственные заболевания и даже психогенные травмы.
Отметим, что обменные процессы при шизофрении также изучали отечественные психиатры Л.И. Ландо, А.Е. Кульков и др.
Современная гипотеза внешнего токсикоза является одной из наиболее популярных теорий патогенеза шизофрении. Согласно данной теории, в условиях токсикоза нормальный процесс трансмиссии между нейронами нарушается. Вместо обычного процесса возбуждения складывается ситуация «смертельно возбужденных нейронов», которую невозможно контролировать. Включения механизма возбуждения как бы не вовремя или без адекватного контроля приводит к тому, что важные синапсы или даже целые группы нейронов разрушаются, что проявляется дегенерацией нервной ткани (Stahl S., 2001).
Полагают, что экзотоксический процесс запускается патологическим процессом, вызывающим избыточную глутаматную активность. Это приводит к чрезмерному открытию кальциевых каналов с последующим отравлением клетки избыточным количеством кальция и образованию свободных радикалов. Последние атакуют клетку, негативно воздействуя на ее мембрану и органеллы, в конечном счете разрушая ее (Stahl S., 2001). Подтипом глутаматного рецептора, опосредующего дегенеративное экзотоксическое отравление, считается подтип NМДА (Н-метил-D-аспартат).
В последнее время американские ученые университета в Балтиморе предложили новую патофизиологическую модель шизофрении, построенную на основе эффекта кетамина (анестетик, широко применяющийся в стоматологии) и фенциклидина на NMDA-рецепторы. Фенциклидин и кетамин являются антагонистами этих рецепторов. Они блокируют ионные каналы (некоторые исследователи полагают, что в качестве вторичных внутриклеточных посредников действия глутамата выступают ионы кальция) и могут вызывать изменение восприятия и когнитивные нарушения, напоминающие симптоматику шизофрении.
![]() | Узнайте больше о симптомах шизофрении |
С помощью ПЭТ (позитронно-эмиссионная томография) было обнаружено, что кетамин увеличивает объем регионарного мозгового кровотока в передней поясной коре и уменьшает кровоток в гиппокампе и мозжечке. Создается впечатление, что гипоглутаматергическое состояние первоначально развивавается в гиппокампе. Это угнетает передачу возбуждающих импульсов в область передней поясной извилины и височной коры. Интересно отметить, что носители гаплотипа риска шизофрении, в частности, нейрегулина 1, как правило, отличаются небольшими размерами гиппокампа. По мнению F. Ebner et al., (2006) осложнения, разививающиеся во время беременности и родов, могут также способствовать уменьшению объема гиппокампа, что увеличивает риск развития шизофрении.
Имеются сведения об увеличении в мозге больных шизофренией числа NMDА. Изменения обнаруживаются в некоторых кортикальных образованиях, включая префронтальную кору могут свидетельствовать об ослаблениие их иннервации глутаматом. Возможно, это ослабление cвязано как с морфологическими, так и функциональными изменениями в данной области коры мозга.
Препараты, блокирующие кальциевые электроуправляемые каналы, эффективны при патологическом возбуждении, но при этом они практически не влияют на электрическую активность нейронов.
С терапевтической точки зрения, представляет интерес эффективность агонистов глутаматных рецепторов (глицин, циклосерин, особенно в отношении негативной симптоматики, наблюдающейся в процессе терапии шизофрении этими препаратами (Deakin J., 2000; Tuominen H. et al., 2005; Carpenter W. et al., 2005).
Глутамат и глутамин при шизофрении
Среди различных подтипов рецепторов глутамата гипофункция рецепторов N-метил-D-аспартата (NMDA) в наибольшей степени вовлечена в патогенез шизофрении.
Изменения уровня глутамата в центральной нервной системе (ЦНС) могут отражать изменения в уровнях крови и наоборот, поскольку сообщалось о положительной корреляции между уровнями глутамата в крови и в ЦНС. Измененные уровни глутамата и глютамина в крови были зарегистрированы при шизофрении, но результаты не являются здесь однозначными. Например, в предыдущих исследованиях было обнаружено повышение уровня глутамата в крови у пациентов с хронической шизофренией по сравнению со здоровыми контрольными, но при острой шизофрении различий не наблюдалось. Интересно, что в одном исследовании сообщалось о снижении уровня глутамата в крови при психозе в первом эпизоде. Сообщалось, что уровни глутамина в крови снижались у пациентов с шизофренией, хотя в другом исследовании не было обнаружено различий в уровнях глутамина в крови у лиц с шизофренией по сравнению со здоровыми контролями. Изменения в периферическом глутамате и глутамине могут происходить при шизофрении, но направление изменений, по-видимому, зависит от продолжительности существования этого психического расстройства.
Уровни глутамата были значительно выше у мужчин, чем у женщин с недавно начавшейся шизофренией. У пациентов с недавно начавшейся шизофренией было выявлено повышенное соотношение глутамин / глутамат в крови, в то время как у пациентов с хронической шизофренией отмечалось снижение соотношения глутамин / глутамат. Таким образом, данные исследований свидетельствуют о том, что соотношение глутамин / глутамат увеличивается в начале шизофрении, но уменьшается с прогрессированием заболевания. Интересно, что использование антипсихотических препаратов связано с уровнями глутамата и глутамина у пациентов с хронической шизофренией. Исследователи обнаружили, что пациенты, принимающие типичные антипсихотики, имеют более низкое соотношение глутамин / глутамат, чем пациенты, использующие атипичные антипсихотики, что указывает на то, что разные антипсихотики могут оказывать различное влияние на уровни глутамата и глутамина. Иными словами некоторые антипсихотические препараты влияют на высвобождение глутамата в мозг, в то время как другие не оказывают на этот процесс никакого влияния.
Увеличение глутамата и снижение глутамина согласуются с изменениями в ферментах цикла глутамат-глутамин, ранее обнаруженных при хронической шизофрении. Исследования посмертной мозговой ткани у пациентов с хронической шизофренией показали снижение уровня белка глутаминсинтетазы и повышение экспрессии глутаминазы и ферментативной активности. Последующее снижение синтеза глутамина и увеличение образования глутамата глутаминазой также может объяснить значительное снижение соотношения глутамин / глутамат, наблюдаемое у пациентов с хронической шизофренией по сравнению со здоровыми контролями.
Важно учитывать, могут ли наблюдаемые изменения глутамата и глутамина у пациентов с шизофренией отражать процессы, происходящие на периферии. Большинство исследователей на сегодняшний день показали положительную корреляцию между уровнями глутамата и глутамина в крови и спинномозговой жидкости (CSF). В то время как у пациентов с хронической шизофренией наблюдалось значительное повышение уровней глутамата в СМЖ по сравнению со здоровым контролем, у пациентов с недавним началом шизофрении различий не наблюдалось.
