как в уме возвести в куб
Красота чисел. Как быстро вычислять в уме

Старинная запись на квитанции в уплате подати («ясака»). Она означает сумму 1232 руб. 24 коп. Иллюстрация из книги: Яков Перельман «Занимательная арифметика»
Ещё Ричард Фейнман в книге «Вы конечно шутите, мистер Фейнман!» поведал несколько приёмов устного счёта. Хотя это очень простые трюки, они не всегда входят в школьную программу.
Например, чтобы быстро возвести в квадрат число X около 50 (50 2 = 2500), нужно вычитать/прибавлять по сотне на каждую единицы разницы между 50 и X, а потом добавить разницу в квадрате. Описание звучит гораздо сложнее, чем реальное вычисление.
52 2 = 2500 + 200 + 4
47 2 = 2500 – 300 + 9
58 2 = 2500 + 800 + 64
Молодого Фейнмана научил этому трюку коллега-физик Ханс Бете, тоже работавший в то время в Лос-Аламосе над Манхэттенским проектом.
Ханс показал ещё несколько приёмов, которые использовал для быстрых вычислений. Например, для вычисления кубических корней и возведения в степень удобно помнить таблицу логарифмов. Это знание очень упрощает сложные арифметические операции. Например, вычислить в уме примерное значение кубического корня из 2,5. Фактически, при таких вычислениях в голове у вас работает своеобразная логарифмическая линейка, в которой умножение и деление чисел заменяется сложением и вычитанием их логарифмов. Удобнейшая вещь.

Логарифмическая линейка
До появления компьютеров и калькуляторов логарифмическую линейку использовали повсеместно. Это своеобразный аналоговый «компьютер», позволяющий выполнить несколько математических операций, в том числе умножение и деление чисел, возведение в квадрат и куб, вычисление квадратных и кубических корней, вычисление логарифмов, потенцирование, вычисление тригонометрических и гиперболических функций и некоторые другие операции. Если разбить вычисление на три действия, то с помощью логарифмической линейки можно возводить числа в любую действительную степень и извлекать корень любой действительной степени. Точность расчётов — около 3 значащих цифр.
Чтобы быстро проводить в уме сложные расчёты даже без логарифмической линейки, неплохо запомнить квадраты всех чисел, хотя бы до 25, просто потому что они часто используются в расчётах. И таблицу степеней — самых распространённых. Проще запомнить, чем вычислять каждый раз заново, что 5 4 = 625, 3 5 = 243, 2 20 = 1 048 576, а √3 ≈ 1,732.
Ричард Фейнман совершенствовал свои навыки и постепенно замечал всё новые интересные закономерности и связи между числами. Он приводит такой пример: «Если кто-то начинал делить 1 на 1,73, можно было незамедлительно ответить, что это будет 0,577, потому что 1,73 — это число, близкое к квадратному корню из трёх. Таким образом, 1/1,73 — это около одной трети квадратного корня из 3».
Настолько продвинутый устный счёт мог бы удивить коллег в те времена, когда не было компьютеров и калькуляторов. В те времена абсолютно все учёные умели хорошо считать в уме, поэтому для достижения мастерства требовалось достаточно глубоко погрузиться в мир цифр.
В наше время люди достают калькулятор, чтобы просто поделить 76 на 3. Удивить окружающих стало гораздо проще. Во времена Фейнмана вместо калькулятора были деревянные счёты, на которых тоже можно было производить сложные операции, в том числе брать кубические корни. Великий физик уже тогда заметил, что использование таких инструментов, людям вообще не нужно запоминать множество арифметический комбинаций, а достаточно просто научиться правильно катать шарики. То есть люди с «расширителями» мозга не знают чисел. Они хуже справляются с задачами в «автономном» режиме.
Вот пять очень простых советов устного счёта, которые рекомендует Яков Перельман в методичке «Быстрый счёт» 1941 года издательства.
1. Если одно из умножаемых чисел разлагается на множители, удобно бывает последовательно умножать на них.
225 × 6 = 225 × 2 × 3 = 450 × 3
147 × 8 = 147 × 2 × 2 × 2, то есть трижды удвоить результат
2. При умножении на 4 достаточно дважды удвоить результат. Аналогично, при делении на 4 и 8, число делится пополам дважды или трижды.
3. При умножении на 5 или 25 число можно разделить на 2 или 4, а затем приписать к результату один или два нуля.
Здесь лучше сразу оценивать, как проще. Например, 31 × 25 удобнее умножать как 25 × 31 стандартным способом, то есть как 750+25, а не как 31 × 25, то есть 7,75 × 100.
При умножении на число, близкое к круглому (98, 103), удобно сразу умножить на круглое число (100), а затем вычесть/прибавить произведение разницы.
37 × 98 = 3700 – 74
37 × 104 = 3700 + 148
4. Чтобы возвести в квадрат число, оканчивающееся цифрой 5 (например, 85), умножают число десятков (8) на него же плюс единица (9), и приписывают 25.
8 × 9 = 72, приписываем 25, так что 85 2 = 7225
Почему действует это правило, видно из формулы:
(10Х + 5) 2 = 100Х 2 + 100Х + 25 = 100Х (X+1) + 25
Приём применяется и к десятичным дробям, которые оканчиваются на 5:
5. При возведении в квадрат не забываем об удобной формуле
(a + b) 2 = a 2 + b 2 + 2ab
44 2 = 1600 + 16 + 320
Урок 14. Возведение двузначных чисел в куб | Ментальная арифметика онлайн
Возведение двузначных чисел в куб | Онлайн-тренажёр
Упражнение считается выполенным после 7 правильных ответов
Для успешного выполнения упражнения ознакомьтесь с теорией и проработайте предыдущие уроки
Возведение двузначных чисел в куб | Теория
13 3 = 16 x 13 x 10 + 13 x 3 2
Умножение 16 на 13 удобно выполнить с помощью факторизации числа 16.
16 x 13 x 10 = 13 x 4 x 4 x 10 = 52 x 4 x 10 = 208 x 10 = 2080
13 x 3 3 = 13 x 9 = 117
453 = 50 x 45 x 40 + 45 x 5 2
50 x 45 x 40 = 45 x 40 x 50 = 1800 x 50 = 90000
45 x 5 2 = 45 x 5 x 5 = 225 x 5 = 1125
90000 + 1125 = 91125
69 3 = 70 x 69 x 68 + 69 x 1 2
Так как числа 69 и 68 близки к круглому числу 70, то их удобно перемножить с помощью формулы (C-a)(C-b) = (C-a-b)C+ab, где “C” – близкое к двум перемножаемым числам круглое число, а “а” и “b” – это разницы между круглым числом и перемножаемыми числами (см. урок 10).
68 x 69 = (70 – 2) x (70 – 1) = (70 – 2 – 1) x 70 + 2 x 1 = 67 x 70 + 2 x 1 = 4690 + 2 = 4692
4692 x 70 = 4692 x 70 = 328440 (см. урок 13)
69 x 1 2 = 69 x 1 = 69
328440 + 69 = 328509
92 3 = 94 x 92 x 90 + 92 x 2 2
Так как числа 94 и 92 близки к круглому числу 90, то их можно перемножить с помощью формулы (C+a)(C+b) = (C+a+b)C+ab, где “C” – близкое к двум перемножаемым числам круглое число, а “а” и “b” – это разницы между перемножаемыми числами и круглым числом (см. урок 10).
94 x 92 = (90 + 4) x (90 + 2) = (90 + 4 + 2) x 90 + 4 x 2 = 96 x 90 + 4 x 2 = 8640 + 8 = 8648
8648 x 90 = 778320 (см. урок 13)
92 x 2 2 = 92 x 4 = 368
778320 + 368 = 778688
96 3 = 100 x 96 x 92 + 96 x 4 2
Перемножить 96 и 92 можно следующими способами (в порядке снижения сложности):
1) Обычное перемножение слева направо: 96 x 92 = 96 x 90 + 96 x 2 = 8640 + 192 = 8832
2) Метод вычитания: 92 x (100 – 4) = 9200 – 368 = 8832
3) С использованием факторизации: 92 x 6 x 4 x 4 = 552 x 4 x 4 = 2208 x 4 = 8832
4) Вычисление по формуле (C+a)(C+b) = (C+a+b)C+ab: 96 x 92 = (90 + 6) x (90 + 2) = (90 + 6 + 2) x 90 + 6 x 2 = 98 x 90 + 6 x 2 = 8820 + 12 = 8832
5) Вычисление по формуле (C-a)(C-b) = (C-a-b)C+ab: 96 x 92 = (100 – 4) x (100 – 8) = (100 – 4 – 8) x 100 + 4 x 8 = 88 x 100 + 4 x 8 = 8800 + 32 = 8832
8832 x 100 = 883200
Операцию 4 2 x 96 также можно выполнить несколькими методами, включая:
1) С использованием факторизации: 4 2 x 96 = 96 x 4 x 4 = 384 x 4 = 1536
2) Метод вычитания: 4 2 x 96 = 16 x (100 – 4) = 1600 – 64 = 1536
883200 + 1536 = 884736
* Формула получена путём умножения формулы для квадрата числа X (из урока 11) на число X: X 3 =X 2 X=((X+Y)(X-Y)+Y 2 )X=(X+Y)X(X-Y)+XY 2
10 трюков, упрощающих математические операции
Реверс малвари
В книге «Магия чисел» рассказывается о десятках трюков, которые упрощают привычные математические операции. Оказалось, что умножение и деление в столбик — это прошлый век, а есть гораздо более эффективные способы деления в уме.
Вот 10 самых интересных и полезных трюков.
Умножение «3 на 1» в уме
Умножение трёхзначных чисел на однозначные — это очень простая операция. Всё, что нужно сделать, — это разбить большую задачу на несколько маленьких.
Возведение в квадрат двузначных чисел
Возводить в квадрат двузначные числа не намного сложнее. Нужно разбить число на два и получить приближенный ответ.
Ключевое правило здесь — превратить искомое число в пару других чисел, которые перемножить гораздо проще. К примеру, для числа 41 это числа 42 и 40, для числа 77 — 84 и 70. То есть мы вычитаем и прибавляем одно и то же число.
Мгновенное возведение в квадрат числа, оканчивающегося на 5
С квадратами чисел, оканчивающихся на 5, вообще не нужно напрягаться. Всё, что нужно сделать, — это умножить первую цифру на число, которое на единицу больше, и добавить в конец числа 25.
Деление на однозначное число
Деление в уме — это достаточно полезный навык. Задумайтесь о том, как часто мы делим числа каждый день. К примеру, счёт в ресторане.
Мы получаем не максимально точный ответ (правильный ответ — 84,375), но согласитесь, что даже такого ответа будет более чем достаточно.
Простое получение 15%
Чтобы быстро узнать 15% от любого числа, нужно сначала посчитать 10% от него (перенеся запятую на один знак влево), затем поделить получившееся число на 2 и прибавить его к 10%.
Банальный трюк
Пожалуй, все мы натыкались на такой трюк:
Вы получили 6, верно? Что бы вы ни загадали, вы всё равно получите 6. И вот почему:
Этот трюк построен на элементарных правилах алгебры. Поэтому, если вы когда-нибудь услышите, что кто-то его загадывает, натяните свою самую надменную усмешку, сделайте презрительный взгляд и расскажите всем разгадку. 🙂
Магия числа 1 089
Этот трюк существует не одно столетие.
Какое бы число вы ни выбрали, в результате получите 1 089.
Быстрые кубические корни
Для того чтобы быстро считать кубический корень из любого числа, понадобится запомнить кубы чисел от 1 до 10:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729 | 1 000 |
Как только вы запомните эти значения, находить кубический корень из любого числа будет элементарно просто.
Пример: кубический корень из 19 683
Примечание: трюк работает только тогда, когда исходное число является кубом целого числа.
Правило 70
Чтобы найти число лет, необходимых для удвоения ваших денег, нужно разделить число 70 на годовую процентную ставку.
Пример: число лет, необходимое для удвоения денег с годовой процентной ставкой 20%.
Правило 110
Чтобы найти число лет, необходимых для утроения денег, нужно разделить число 110 на годовую процентную ставку.
Пример: число лет, необходимое для утроения денег с годовой процентной ставкой 12%.
Математика — волшебная наука. Если даже такие простые трюки удивляют, то какие ещё фокусы можно придумать?
Быстрое возведение чисел от 1 до 100 в квадрат
Вдохновленный этой статьей, решил поделиться с вами способом быстрого возведения в квадрат. Возведение в квадрат более редкая операция, нежели умножение чисел, но под нее существуют довольно интересные правила.
*квадраты до сотни
Для того, чтобы бездумно не возводить в квадрат по формуле все числа, нужно максимально упростить себе задачу следующими правилами.
Правило 1 (отсекает 10 чисел)
Для чисел, оканчивающихся на 0.
Если число заканчивается на 0, умножить его не сложнее, чем однозначное число. Стоит лишь дописать пару нулей.
В таблице отмечены красным.
Правило 2 (отсекает 10 чисел)
Для чисел, оканчивающихся на 5.
Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно умножить первую цифру (x) на (x+1) и дописать к результату “25”.
В таблице отмечены зеленым.
Правило 3 (отсекает 8 чисел)
Для чисел от 40 до 50.
Достаточно трудно, верно? Давайте разберем пример:
В таблице отмечены светло-оранжевым.
Правило 4 (отсекает 8 чисел)
Для чисел от 50 до 60.
Тоже достаточно трудно для восприятия. Давайте разберем пример:
В таблице отмечены темно-оранжевым.
Правило 5 (отсекает 8 чисел)
Для чисел от 90 до 100.
Похоже на правило 3, но с другими коэффициентами. Давайте разберем пример:
В таблице отмечены темно-темно-оранжевым.
Правило №6 (отсекает 32 числа)
Необходимо запомнить квадраты чисел до 40. Звучит дико и трудно, но на самом деле до 20 большинство людей знают квадраты. 25, 30, 35 и 40 поддаются формулам. И остается лишь 16 пар чисел. Их уже можно запомнить при помощи мнемоники (о которой я также хочу рассказать позднее) или любыми другими способами. Как таблицу умножения 🙂
В таблице отмечены синим.
Вы можете запомнить все правила, а можете запомнить выборочно, в любом случае все числа от 1 до 100 подчиняются двум формулам. Правила же помогут, не используя эти формулы, быстрее посчитать больше 70% вариантов. Вот эти две формулы:
Формулы (осталось 24 числа)
Для чисел от 25 до 50
Для чисел от 50 до 100
Конечно не стоит забывать про обычную формулу разложения квадрата суммы (частный случай бинома Ньютона):
UPDATE
Произведения чисел, близких к 100, и, в частности, их квадраты, также можно вычислять по принципу «недостатков до 100»:
Словами: из первого числа вычитаем «недостаток» второго до сотни и приписываем двузначное произведение «недостатков».
Для квадратов, соответственно, еще проще.
Возведение в квадрат, возможно, не самая полезная в хозяйстве вещь. Не сразу вспомнишь случай, когда может понадобиться квадрат числа. Но умение быстро оперировать числами, применять подходящие правила под каждое из чисел отлично развивает память и «вычислительные способности» вашего мозга.
Кстати, думаю, все читатели хабры знают, что 64^2 = 4096, а 32^2 = 1024.
Многие квадраты чисел запоминаются на ассоциативном уровне. Например, я легко запомнил 88^2 = 7744, из-за одинаковых чисел. У каждого наверняка найдутся свои особенности.
Две уникальные формулы я впервые нашел в книге «13 steps to mentalism», которая мало связана с математикой. Дело в том, что раньше (возможно, и сейчас) уникальные вычислительные способности были одним из номеров в сценической магии: фокусник рассказывал байку о том, как он получил сверхспособности и в доказательство этого моментально возводит числа до сотни в квадрат. В книге так же указаны способы возведения в куб, способы вычитания корней и кубических корней.
Если тема быстрого счета интересна — буду писать еще.
Замечания об ошибках и правки прошу писать в лс, заранее спасибо.
Как научиться считать в уме
Считать в уме, по мнению многих, в наше время уже неактуально, ведь калькулятор есть в каждом смартфоне, компьютере и ноутбуке. Однако калькулятор не будет сопровождать вас при каждом вашем шаге, а считать необходимо постоянно и много. Способность сосчитать в уме – умение весьма нужное даже в 21 веке. А тем более это нужно школьникам для решения примеров по математике из нелёгкой школьной программы. И им весьма полезно будет уметь считать быстро, не пребегая к электронным устройствам.
Опыт и постоянные тренировки играют важную роль в развитии любых способностей, но навык устного счета не состоит только лишь из опыта. Это могут доказать люди, умеющие считать в уме гораздо более сложные примеры: например, умножать и делить трех- и четырехзначные числа, находить суммы и разности огромных примеров.
Что необходимо знать и делать человеку, дабы повторить такое?
• Во-первых, концентрация или же умение ненадолго удерживать в памяти несколько вещей одновременно.
• Во-вторых, алгоритмы, специальные методы вычислений и математические уловки, значительно облегчающие процесс устного счёта.
• В-третьих, практика. Постоянные тренировки и постепенное усложнение решаемых задач позволят улучшить скорость и качество устного счета.
Важно отметить, что именно практика имеет наибольшее значение. Не обладая достаточным опытом, вы не сможете быстро применять удобные алгоритмы, подходящие под определённые ситуации. И помните, что максимальный эффект будет достигнут при оптимальном использовании всех трёх составляющих. Тренировать сразу все аспекты этого навыка Вы можете в онлайн тренажере устного счёта.
Внимание и концентрация
Чтобы максимально быстро считать в уме, необходимо уметь концентрироваться на конкретном примере. Этот навык полезен не только для совершения математических операций, но и для решения любых жизненных задач. Существует несколько способов улучшить свою внимательность и способность к концентрации:
При счете в уме, важно ясно представлять себе решаемый пример – визуализировать его. Запоминать промежуточные результаты нужно не на слух, а так как они выглядят в записи, например, на бумаге. Тренировать подобное восприятие можно разными способами, и отчасти визуализация решения приходит с опытом.
Старайтесь всегда находить что-то интересное в рутине, превращая действие в игру. Так поступают и некоторые родители, желающие, чтобы их ребёнок выполнил какую-либо скучную работу.
Огромное количество людей всегда хотят «быть лучше» соперника. Именно поэтому состязательность является еще одним способом развить свою внимательность. В устном счете Вы можете найти себе соперника и пытаться его в этом превзойти.
Еще одним фактором, создающим азарт при счете, может стать борьба с самим собой при достижении определенного результата, то есть личные рекорды. Их можно ставить, например, в скорости счета, в количестве решенных примеров и своей точности ответов.
Наконец, максимальная концентрация может быть достигнута при спонтанном увлечении процессом счета. Как пример, во время чтения Вы перестаёте думать об окружающих вас предметах, людях, ситуациях, полностью погружаетесь в книгу. Именно неподдельный интерес к чему-либо способен заставить вас приобрести наибольшую внимательность в этом деле.
Безусловно, все эти способы надо отрабатывать, практиковать. В этом могут помочь различные тренажеры зрительной памяти и улучшения внимательности.
Простые арифметические закономерности
Решение любой по сложности задачи всегда сводится к применению базовых принципов, и именно эти принципы и закономерности позволят вам быстро выполнять различного рода операции. Существует определенный набор таких правил и закономерностей, которые необходимо довести до автоматизма с помощью разных онлайн тренажеров по математике.
Таблица умножения. Для быстрого устного счета хорошо бы безупречно знать таблицу умножения, которая является основой счета. Если у Вас с этим еще проблемы, можете воспользоваться онлайн Тренажером таблицы умножения.
Деление на 2. Несмотря на то, что многим умножение и деление на 2 дается достаточно просто, в сложных случаях так же пытайтесь округлять числа. Например, чтобы разделить 198 на 2, нужно сначала разделить 200 (это 198 + 2 ) на 2 и отнять 2 деленое на 2. Итого: 198 : 2 = 200 :2- 2 :2=100-1=99.
Деление и умножение на 4 и 8. Деление (или умножение) на 4 и на 8 являются двукратным или трехкратным делением (или умножением) на 2. Производить эти операции удобно последовательно. Например, 46 × 4 = 46 × 2×2 = 92 × 2 =184.
Умножение на 11. Чтобы умножить любое двузначное число на 11, нужно между первой и второй цифрой умножаемого числа вписать сумму первой и второй цифры. Например: 23×11= 2 (2+3) 3 = 2 5 3. Или если сумма чисел в центре дает результат больше 10: 29×11 = 2 (2+9) 9 = 2 (11) 9 = 3 1 9.
Более сложные методики
Эффективность умножения в уме некоторых двузначных чисел может быть выше за счет меньшего количества действий, если использовать специальные алгоритмов. Ниже представлены три специальные методики, в том числе введение и использование опорного числа.
Квадрат суммы и квадрат разности
23 2 = (20+3) 2 = 20 2 + 2×3×20 + 3 2 = 400+120+9 = 529
69 2 = (70-1) 2 = 70 2 – 70×2×1 + 1 2 = 4 900-140+1 = 4 761
Возведение в квадрат чисел, заканчивающихся на 5
25 2 = (2×(2+1)) 25 = 625
85 2 = (8×(8+1)) 25 = 7 225
155 2 = (15×(15+1)) 25 = (15×16)25 = 24 025
Опорное число
Наиболее популярной методикой умножения больших чисел в уме является прием использования, так называемого, опорного числа. Опорное число при умножении – это число, к которому близко находятся оба множителя и на которое удобно умножать. А методика использования этого числа зависит от того, являются ли множители больше или меньше него самого.
Оба множителя больше опорного. Действовать нужно точно так же, но не вычитать недостаток, а прибавлять избыток:
Один множитель меньше, другой больше опорного. Схема та же, но произведение недостатка и избытка нужно вычитать:

