клетки головного мозга гистология
Клетки головного мозга гистология
Последний исчезает в производных промежуточного и конечного мозга, как образованиях филогенетически более молодых, в которых концентрируются интегративные функции.
Стволовыми клетками для развития нервной ткани и нейроглии головного мозга служат матричные клетки, расположенные в эпендимном слое желудочков мозга. Матричные клетки интенсивно делятся митозом, мигрируют за пределы эпендимного слоя, дифференцируются на нейробласты и глиобласты (спонгиобласты), дающие позднее соответственно нейроны и клетки глии. Часть клеток остается на месте и формирует эпендимную выстилку желудочков мозга.
Пролиферация и дифференцировка матричных клеток в разных отделах головного мозга происходят гетерохронно. При формировании коры важную роль в миграции нейробластов играют радиальные глиоциты (мюллеровы волокна). Тела клеток располагаются в эпендимном слое, а отроски простираются до наружной поверхности нейроэпителиальной выстилки нервной трубки. Именно по отросткам радиальных глиоцитов происходит направленная миграция нервных клеток из глубоких в поверхностные слои формирующихся корковых структур мозга. Из мезенхимы развиваются сосуды, а из стволовых кроветворных клеток — клетки микроглии.
Ствол головного мозга
К стволу головного мозга относят продолговатый мозг, мост, мозжечок и образования среднего и промежуточного мозга. По мере перехода спинного мозга в продолговатый теряется характерная форма серого вещества спинного мозга, но принцип локализации ядер по функции сохраняется: чувствительные ядра занимают дорсальную, а двигательные — вентральную части ствола. Между ними располагается ретикулярная формация.
В чувствительных ядрах находятся нейроны, которые аналогичны не афферентным псевдоуниполярным нейронам спинального ганглия, а нейронам ядер задних рогов спинного мозга. Эти пучковые нейроны получают импульсы от нейронов сшшальных ганглиев по отросткам, идущим в составе клиновидного и тонкого пучков, а также от чувствительных нейронов таких ганглиев, как полулунный, коленный, каменистый, яремный, верхний пучковидный.
В двигательных ядрах ствола мозга находятся мультиполярные нейроны, осуществляющие моторную иннервацию скелетных мышц головы и шеи. Нейроны вегетативных ядер продолговатого и среднего мозга направляют свои аксоны в вегетативные ганглии.
Рефлекторные дуги построены не из простой цепочки нейронов, а включают группы нейронов, в которых возможно осуществление пре- и постсинаптического торможения и модуляция с помощью нейропептидов интернейронов потока афферентных и эфферентных сигналов. Группировки нейронов являются общим принципом внутренней организации корковых и ядерных структур мозга. Объединять нейроны в единую функциональную систему могут коллатерали афферентного отростка и интернейроны (продуцирующие нейропептиды), модифицирующие проведение нервного импульса.
Различные части ствола головного мозга тесно взаимосвязаны благодаря наличию внутреннего собственного рефлекторного аппарата. Важная роль в установлении этих взаимосвязей принадлежит также аппарату двусторонних связей спинного мозга и стволовой части головного мозга, который включает восходящие и нисходящие пути.
В состав ствола мозга входит ретикулярная формация — восходящая диффузно активирующая система головного мозга. В ее сети располагаются мультиполярные нейроны (размером от 5 до 120 мкм) с маловетвящимися отростками. Ретикулярная формация получает импульсы от афферентных путей, но сами импульсы проходят через нее в 4-5 раз медленнее, чем через прямые пути. Отростки нейронов ретикулярной формации направляются в кору большого мозга, мозжечка, в ядра ствола мозга, где формируют синапсы (холин-, адрен-, дофаминэргические и др.) с нейронами.
Так осуществляется интегративная функция ретикулярной формации. Нисходящие волокна нейронов ретикулярной формации взаимодействуют с моторными нейронами спинного мозга. При этом они тормозят их активность. Считается, что ретикулярная формация принимает участие в формировании эмоций, восприятии боли, осуществляет контроль стереотипных движений, тонуса мышц.
Клетки головного мозга гистология
Строение коры мозжечка одинаковое во всех отделах. Она состоит из трех основных слоев: самого глубокого — зернистого, или гранулярного, слоя (прилежит непосредственно к белому веществу), слоя клеток Пуркинье, образованного преимущественно клетками Пуркинье, и поверхностного молекулярного слоя.
Зернистый слой образован миллионами клеток-зерен, тела которых имеют диаметр 6-8 нм. К их коротким дендритам подходят так называемые мшистые (моховидные) волокна от всех отделов мозга, за исключением нижнего ядра оливы. До вхождения в кору мозжечка возбуждающие мшистые волокна отдают коллатеральные ветви к глубоким ядрам мозжечка.
Аксоны клеток-зерен направляются в молекулярный слой, где происходит их Т-образное разветвление с образованием параллельных волокон (проходящих параллельно поперечным бороздам мозжечка), параллельных другим параллельным волокнам, но расположенным перпендикулярно относительно осей дендритов клеток Пуркинье. Они образуют возбуждающие (глутаматергические) контакты с дистальными отделами дендритов клеток Пуркинье. В зернистом слое расположены также клетки Гольджи (см. ниже), дендриты которых возбуждают параллельные волокна клеток-зерен.
Слой клеток Пуркинье образован очень крупными клетками Пуркинье. Веерообразно расходящиеся дендриты клеток Пуркинье образуют самое крупное дендритное дерево во всей нервной системе. Их волокна расположены под прямым углом к параллельным волокнам.
Кора мозжечка:
(А) Клеточные слои. (Б) Афферентные волокна.
(В) Вставочные нейроны. (Г) Эфферентные волокна.
Дендритное дерево клеток Пуркинье образует контакты с огромным количеством аксонов параллельных волокон клеток-зерен (до 100000, но обычно активна только небольшая их часть), каждое из которых образует следующие друг за другом синапсы с дендритами около 400 (возможно и намного больше) клеток Пуркинье. Неудивительно, что стимуляция мшистыми волокнами очень небольшого количества клеток-зерен приводит лишь к слабому возбуждению значительного количества клеток Пуркинье. Для создания потенциала действия клеток Пуркинье требуется одновременное возбуждение тысяч параллельных волокон.
К каждой клетке Пуркинье подходит только одно лазящее (лиановидное) волокно от противоположного нижнего ядра оливы. В отличие от синаптических контактов с параллельными волокнами по типу «один-на-клетку», оливомозжечковое волокно разветвляется у начала дендритного дерева клетки Пуркинье, образуя огромное количество синапсов (тысячи) с ее дендритными ветвями. Одного возбуждающего импульса по лазящему волокну достаточно для образования множества потенциалов действия клетки Пуркинье — сложного спайка.
Мощность сложного спайка настолько велика, что иногда после его прохождения синаптическая активность параллельных волокон подвергаются длительной депрессии (long-term depression — LTD). Таким образом, клетки Пуркинье запоминают, что они были возбуждены оливомозжечковыми волокнами.
Взаимное расположение параллельных волокон и лазящих волокон, образующих синапсы с дендритами клеток Пуркинье.
Аксоны клеток Пуркинье — единственные аксоны, покидающие кору мозжечка. Интересно, что они обладают исключительно тормозной активностью (нейромедиатор — ГАМК). Прямые мишени этих волокон — соответствующие глубокие ядра мозжечка. Кроме того, они отдают коллатеральные ветви, преимущественно к клеткам Гольджи.
Молекулярный слой почти полностью занят дендритами клеток Пуркинье, параллельными волокнами, опорными клетками нейроглии и кровеносными сосудами. Кроме того, здесь можно обнаружить два типа вставочных тормозных нейронов, лежащих в плоскости дендритов клеток Пуркинье, но перпендикулярных аксонам клеток-зерен (параллельным волокнам). Около поверхности коры расположены мелкие звездчатые клетки; рядом со слоем клеток Пуркинье лежат корзинчатые клетки. Обе группы клеток образуют контакты с параллельными волокнами и вызывают торможение клеток Пуркинье.
Звездчатые клетки образуют синапсы вдоль осей дендритов, тогда как корзинчатые клетки формируют «корзинку» синаптических контактов вокруг нейронов и, кроме того, образуют аксоаксональные синапсы с начальным сегментом аксона. Одна корзинчатая клетка контактирует примерно с 250 клетками Пуркинье. Поскольку возбуждается одна группа или ряд клеток Пуркинье, вставочные нейроны будут тормозить ряды с обеих сторон.
Последний тип клеток коры — клетки Гольджи, дендриты которых контактируют с параллельными волокнами, а аксоны широко разветвляются перед образованием синапсов с короткими дендритами клеток-зерен. Синаптический комплекс, включающий терминаль мшистого волокна, дендриты клеток-зерен и шишковидное окончание клетки Гольджи, обозначают как клубочек. Функция клеток Гольджи — ограничение воздействия мшистых волокон на клетки-зерна.
Множественные эффекты возбуждения мшистых волокон. Как отмечено ранее, к восходящим мозжечковым волокнам (кроме оливомозжечковых) относят мшистые волокна после отхождения от них возбуждающих коллатеральных волокон к одному из глубоких ядер мозжечка. Восходящие волокна возбуждают группы клеток-зерен, которые, в свою очередь, стимулируют несколько сотен клеток Пуркинье, организованных в ряды позади параллельных волокон клеток-зерен. Вдоль ряда возбуждения, известного как микрозона (наименьшая нисходящая единица коры мозжечка), клетки Пуркинье начинают возбуждаться и тормозить нейроны в одном из глубоких ядер.
В то же время слабо активированные клетки Пуркинье по краям микрозоны тормозятся звездчатыми и корзинчатыми клетками. В результате определенный ряд клеток Пуркинье становится максимально возбужденным, а активность остальных рядов тормозится. Возбуждение прерывается торможением клетками Гольджи клеток-зерен, активирующих их (самоподавление). Повышенное возбуждение будет длиться дольше, так как сильно возбужденные клетки Пуркинье тормозят прилежащие клетки Гольджи, обеспечивая таким образом длительное возбуждение клеток-зерен.
Синаптический клубочек. +/- указывает на возбуж-дение/торможение.
Последовательность событий при возбуждении мшистых волокон:
1. Мшистое волокно активирует клетку-зерно (КЗ).
2. Возбуждение параллельного волокна сопровождается одновременной активацией множества клеток-зерен.
3. Возбуждение дистальных клеток Пуркинье (П1) приводит к избирательному торможению нейронов в соответствующем центральном ядре мозжечка.
4. Возбуждение звездчатых (3) и корзинчатых клеток (К) приводит к торможению прилежащих клеток Пуркинье (П2)
5. Клетки Гольджи (Го) тормозят активность клеток-зерен.
6. Повышенное возбуждение поддерживается торможением клеток Гольджи клетками Пуркинье.
Редактор: Искандер Милевски. Дата публикации: 21.11.2018
Частная гистология
Нервная система обеспечивает регуляцию всех жизненных процессов в организме и его взаимодействие с внешней средой. Анатомически нервную систему делят на центральную и периферическую. К первой относят головной и спинной мозг, вторая объединяет периферические нервные узлы, стволы и окончания. Такое деление нервной системы условно и допускается лишь из методических соображений. Морфологическим субстратом рефлекторной деятельности нервной системы являются рефлекторные дуги, представляющие собой цепь нейронов различного функционального значения, тела которых расположены в разных отделах нервной системы, как в периферических узлах, так и в сером веществе центральной нервной системы.
С физиологической точки зрения нервная система делится на соматическую, иннервирующую все тело, кроме внутренних органов, сосудов и желез, и автономную, или вегетативную, регулирующую деятельность перечисленных органов.
Развитие. Нервная система развивается из нервной трубки и ганглиозной пластинки. Из краниальной части нервной трубки дифференцируется головной мозг и органы чувств. Из туловищного отдела нервной трубки и ганглиозной пластинки формируются спинной мозг, спинномозговые и вегетативные узлы и хромаффинная ткань организма. Особенно быстро возрастает масса клеток в боковых отделах нервной трубки, тогда как дорсальная и вентральная ее части не увеличиваются в объеме и сохраняют эпендимный характер. Утолщенные боковые стенки нервной трубки делятся продольной бороздой на дорсальную — крыльную пластинку и вентральную — основную. В этой стадии развития в боковых стенках нервной трубки можно различить три зоны: эпендиму, выстилающую канал, плащевой слой и краевую вуаль. Из плащевого слоя в дальнейшем развивается серое вещество спинного мозга, а из краевой вуали — его белое вещество. Нейробласты передних столбов дифференцируются в двигательные нейроны ядер передних рогов. Их аксоны выходят из спинного мозга и образуют его передние корешки. В задних столбах и промежуточной зоне развиваются различные ядра вставочных (ассоциативных) клеток. Их аксоны, поступая в белое вещество спинного мозга, входят в состав различных проводящих пучков. В задние рога входят нейриты чувствительных клеток спинномозговых ганглиев.
Одновременно с развитием спинного мозга закладываются спинномозговые и периферические вегетативные узлы. Исходным материалом для них служат клеточные элементы ганглиозной пластинки, дифференцирующиеся в нейрооласты и глиобласты, из которых образуются клеточные элементы спинномозговых ганглиев. Часть их смещается на периферию в места локализации вегетативных нервных ганглиев и хромаффинной ткани.
Чувствительные узлы лежат по ходу задних корешков спинного мозга либо черепномозговых нервов.
Спинномозговой узел окружен соединительнотканной капсулой. От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, которая образует его остов и проводит кровеносные сосуды.
Нейроны спинномозгового узла располагаются группами, преимущественно по перифирии органа, тогда как его центр состоит главным образом из отростков этих клеток. Дендриты идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Нейриты в совокупности образуют задние корешки, несущие нервные импульсы или в серое вещество спинного мозга, или по его заднему канатику в продолговатый мозг. Биполярные клетки у низших позвоночных сохраняются в течение всей жизни. Биполярными являются и афферентные нейроны некоторых черепных нервов (gangi. spirale cochleare). В спинномозговых узлах высших позвоночных животных и человека биполярные нейроны в процессе созревания становятся псевдоуниполярными. Отростки клеток постепенно сближаются, и их основания сливаются. Вначале учиненная часть тела (основание отростков) имеет небольшую длину, но со временем, разрастаясь, она многократно обвивают клетку и часто образует клубок. Существует и другая точка зрения на процесс формирования псевдоуниполярных нейронов: аксон отрастает от удлиненной части тела нейроцита после формирования дендрита. Дендриты и нейриты кочеток в узле и за его пределами покрыты оболочками из нейролеммоцитов. Нервные клетки спинномозговых узлов окружены слоем клеток глии, которые получили здесь название мантийных глиоцитов, или глиоцитов ганглия (gliocyti ganglii). Их можно узнать по круглым ядрам клеток, окружающих тело нейрона. Снаружи глиальная оболочка тела нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер.
Периферические нервные стволы — нервы — состоят из миелиновых и безмиелиновых волокон и соединительнотканных оболочек. В некоторых нервах встречаются одиночные нервные клетки и мелкие ганглии. На поперечном срезе нерва видны сечения осевых цилиндров нервных волокон и одевающие их глиальные оболочки. Между нервными волокнами в составе нервного ствола располагаются тонкие прослойки соединительной ткани — эндоневрий (endoneurium). Пучки нервных волокон одеты периневрием (perineurium). Периневрий состоит из чередующихся слоев плотно расположенных клеток и тонких фибрилл. Таких слоев в периневрии толстых нервов несколько (5—6). Фибриллы ориентированы вдоль нерва. Наружная оболочка нервного ствола — эпиневрий (epineurium) — представляет собой волокнистую соединительную ткань, богатую фибробластами, макрофагами и жировыми клетками. Соединительнотканные оболочки нерва содержат кровеносные и лимфатические сосуды и нервные окончания. В эпиневрий поступает по всей длине нерва большое количество анастомозирующих между собой кровеносных сосудов. Из эпиневрия артерии проникают в периневрии и эндоневрий.
Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой серединной щелью, а сзади—соединительнотканной перегородкой. На свежих препаратах спинного мозга невооруженным глазом видно, что его вещество неоднородно. Внутренняя часть органа темнее — это его серое вещество (substantia grisea). На периферии спинного мозга располагается более светлое белое вещество (substantia alba). Серое вещество на поперечном сечении мозга видно в виде буквы «Н» или бабочки. Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога (cornu ventrale, cornu dorsale, cornu laterale).
Серое вещество спинного мозга состоит из нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной’ составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны.
Белое вещество спинного мозга образуется совокупностью продольно ориентированных преимущественно миелиновых волокон.
Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга.
Нейроциты. Клетки, сходные по размерам, тонкому строению и функциональному значению, лежат в сером веществе группами, которые называются ядрами. Среди нейронов спинного мозга можно выделить следующие виды клеток: корешковые клетки (neurocytus radiculatus), нейриты которых покидают спинной мозг в составе его передних корешков, внутренние клетки (neurocytus internus), отростки которых заканчиваются синапсами в пределах серого вещества спинного мозга, и пучковые клетки (neurocytus funicularis), аксоны которых проходят в белом веществе обособленными пучками волокон, несущими нервные импульсы от определенных ядер спинного мозга в его другие сегменты или в соответствующие отделы головного мозга, образуя проводящие пути. Отдельные участки серого вещества спинного мозга значительно отличаются друг от друга по составу нейронов, нервных волокон и нейроглии.
В задних рогах различают: губчатый слой, желатинозное вещество, собственное ядро заднего рога и грудное ядро. Между задними и боковыми рогами серое вещество вдается тяжами в белое, вследствие чего образуется его сетеобразное разрыхление, получившее название сетчатого образования.
Губчатый слой задних рогов характеризуется широкопетлистым глиальным остовом, в котором содержится большое количество мелких вставочных нейронов.
В желатинозном веществе преобладают глиальные элементы. Нервные клетки здесь мелкие и количество их незначительно.
Задние рога богаты диффузно расположенными вставочными клетками. Это мелкие мультиполярные ассоциативные и комиссуральные клетки, аксоны которых заканчиваются в пределах серого вещества спинного мозга той же стороны (ассоциативные клетки) или противоположной стороны (комиссуральные клетки).
Нейроны губчатой зоны, желатинозного вещества и вставочные клетки осуществляют связь между чувствительными клетками спинальных ганглиев и двигательными клетками передних рогов, замыкая местные рефлекторные дуги. В середине заднего рога располагается собственное ядро заднего рога. Оно состоит из вставочных нейронов, аксоны которых переходят через переднюю белую спайку на противоположную сторону спинного мозга в боковой канатик. белого вещества, где они входят в состав вентрального спинномозжечкового и спиноталамического путей и направляются в мозжечок и зрительный бугор.
Грудное ядро состоит из крупных вставочных нейронов с сильно разветвленными дендритами. Их аксоны выходят в боковой канатик белого вещества той же стороны и в составе дорсального спинномозжечкового пути поднимаются к мозжечку.
В промежуточной зоне различают медиальное промежуточное ядро, нейриты клеток которого присоединяются к вентральному спинномозжечковому пути той же стороны, и латеральное промежуточное ядро, расположенное в боковых рогах и представляющее собой группу ассоциативных клеток симпатической рефлекторной дуги. Аксоны этих клеток покидают мозг вместе с соматическими двигательными волокнами в составе передних корешков и обособляются от них в виде белых соединительных ветвей симпатического ствола.
В передних рогах расположены самые крупные нейроны спинного мозга, которые имеют диаметр 100—140 мкм и образуют значительные по объему ядра. Это, так же как и нейроны ядер боковых рогов, корешковые клетки, поскольку их нейриты составляют основную массу волокон передних корешков. В составе смешанных спинномозговых нервов они поступают на периферию и образуют моторные окончания в скелетной мускулатуре. Таким образом, эти ядра представляют собой моторные соматические центры. Различают в передних рогах медиальную и латеральную группы моторных клеток. Первая иннервирует мышцы туловища и развита хорошо на всем протяжении спинного мозга. Вторая находится в области шейного и поясничного утолщений и иннервирует мышцы конечностей.
В сером веществе спинного мозга рассеянных пучковых нейронов много. Аксоны этих клеток выходят в белое вещество и сразу же делятся на более длинную восходящую и более короткую нисходящую ветви. В совокупности эти волокна образуют собственные, или основные, пучки белого вещества, непосредственно прилегающие к серому веществу. По своему ходу они дают много коллатералей, которые, как и сами ветви, заканчиваются синапсами на двигательных клетках передних рогов 4—5 смежных сегментов спинного мозга. Собственных пучков три пары.
Глиоциты спинного мозга. Спинномозговой канал выстлан эпендимоцитами, участвующими в выработке спинномозговой жидкости. От периферического конца эпендимоцита отходит длинный отросток, входящий в состав наружной пограничной мембраны спинного мозга.
Основную часть остова серого вещества составляют протоплазматические и волокнистые астроциты. Отростки волокнистых астроцитов выходят за пределы серого вещества и вместе с элементами соединительной ткани принимают участие в образовании перегородок в белом веществе и глиальных мембран вокруг кровеносных сосудов и на поверхности спинного мозга. Олигодендроглия входит в состав оболочек нервных волокон. Микроглия поступает в спинной мозг по мере врастания в него кровеносных сосудов и распределяется в сером и белом веществе.
В головном мозге различают серое и белое вещество, но распределение этих двух составных частей здесь значительно сложнее, чем в спинном мозге. Большая часть серого вещества головного мозга располагается на поверхности большого мозга и в мозжечке, образуя их кору. Меньшая часть образует многочисленные ядра ствола мозга.
Ствол мозга. Проводящие пути и детали строения ствола мозга изложены в курсах нормальной анатомии и неврологии. В состав ствола мозга входят продолговатый мозг, мост, мозжечок и структуры среднего и промежуточного мозга. Все ядра серого вещества ствола мозга состоят из мультиполярных нейронов. Различают ядра черепных нервов и переключатёльные ядра. К первым относят ядра подъязычного, добавочного, блуждающего, языкоглоточного, преддверно-улиткового нервов продолговатого мозга; отводящего, лицевого, тройничного нервов моста. К числу вторых относятся нижнее, медиальное добавочное и заднее добавочное оливные ядра продолговатого мозга; верхнее оливное ядро, ядра трапециевидного тела и ядро латеральной петли моста; зубчатое ядро, пробковидное ядро, ядро шатра, шаровидное ядро мозжечка; красное ядро среднего мозга и др.
Продолговатый мозг. Продолговатый мозг характеризуется присутствием перечисленных выше ядер черепных нервов, которые концентрируются преимущественно в его дорсальной части, образующей дно IV желудочка. Из числа переключательных ядер следует отметить нижние оливы. Они содержат крупные мультиполярные нервные клетки, нейриты которых образуют синаптические связи с клетками мозжечка и зрительного бугра. В нижние оливы поступают волокна от мозжечка, красного ядра, ретикулярной формации и спинного мозга, с которыми нейроны нижних олив связаны особыми волокнами. В центральной области продолговатого мозга располагается важный координационный аппарат головного мозга — ретикулярная формация.
Ретикулярная формация начинается в верхней части спинного мозга и тянется через продолговатый мозг, мост, средний мозг, центральные части зрительного бугра, гипоталамус и другие области, соседние со зрительным бугром. Многочисленные нервные волокна идут в ретикулярной формации в различных направлениях и в совокупности образуют сеть. В этой сети располагаются мелкие группы мультиполярных нейронов. Нейроны варьируют по размерам от очень маленьких до очень больших. Мелкие нейроны, составляющие большинство, имеют короткие аксоны, образующие множество контактов в самой ретикулярной формации. Большие нейроны характеризуются тем, что их аксоны часто образуют бифуркации с одним ответвлением, идущим вниз в спинной мозг и другим — вверх в зрительный бугор или другие базальные области промежуточного мозга и в большой мозг. Сенсорные волокна ретикулярная формация получает из многих источников, таких как спиноретикулярный тракт, вестибулярные ядра, мозжечок, кора большого мозга, особенно ее двигательная область, гипоталамус и другие соседние области. Ретикулярная формация представляет собой сложный рефлекторный центр и принимает участие в контроле над тонусом мышц и стереотипными движениями.
Белое вещество в продолговатом мозге занимает преимущественно вентролатеральное положение. Основные пучки миелиновых нервных волокон представлены кортико-спинальными пучками (пирамиды продолговатого мозга), лежащими в его вентральной части. В боковых областях располагаются веревчатые тела, образованные волокнами спинно-мозжечковых путей. Отсюда эти волокна поступают в мозжечок. Отростки нейронов ядер клиновидного и тонкого пучков в виде внутренних дуговых волокон пересекают ретикулярную формацию, перекрещиваются по средней линии, образуя шов, и направляются к зрительному бугру.
Мост делится на дорсальную (покрышковую) и вентральную части. Дорсальная часть содержит волокна проводящих путей продолговатого мозга, ядра V—VIII черепных нервов, ретикулярную формацию моста. В вентральной части располагаются собственные ядра моста и волокна пирамидных путей, идущие продольно. Ядра моста построены из мультиполярных нейронов, размеры и форма которых в различных ядрах различны. К переключательным ядрам задней части моста относятся верхнее оливное ядро, ядра трапециевидного тела и ядро латеральной петли. Центральные отростки нейронов улиткового узла заканчиваются на переднем и заднем улитковых ядрах продолговатого мозга. Аксоны нейронов переднего улиткового ядра заканчиваются в верхнем оливном ядре и ядрах трапециевидного тела. Аксоны верхнего оливного ядра, заднего улиткового ядра и ядер трапециевидною тела образуют латеральную петлю. В состав последней входят также клетки ядра латеральной петли и их отростки. Латеральная петля закапчивается в первичных слуховых центрах — нижнем холмике крыши среднего мозга и медиальном коленчатом теле.
Средний мозг состоит из крыши среднего мозга (четверохолмия), покрышки среднего мозга, черного вещества и ножек мозга. Четверохолмие состоит из пластинки крыши, двух ростральных (верхних) и двух каудальных (нижних) холмиков. Ростральные холмики (звено зрительного анализатора) характеризуются послойным расположением нейронов, каудальные (часть слухового анализатора) построены по ядерному принципу. В покрышке среднего мозга находится до 30 ядер и в том числе красное ядро. Красное ядро состоит из крупноклеточной и мелкоклеточной частей. Крупноклеточная часть получает импульсы из базальных ганглиев конечного мозга и передает сигналы по руброспинальному тракту в спинной мозг, а по коллатералям руброспинального тракта — в ретикулярную формацию. Мелкие нейроны красного ядра возбуждаются импульсами из мозжечка по церебеллорубральному тракту и посылают импульсы в ретикулярную формацию. Черное вещество получило свое название в связи с тем, что в его мелких веретенообразных нейронах содержится меланин. Ножки мозга образованы миелиновыми волокнами, идущими от коры большого мозга.
Промежуточный мозг. В промежуточном мозге преобладает по объему зрительный бугор. Вентрально от него располагается богатая мелкими ядрами гипоталамическая (подбугорная) область. Зрительный бугор содержит много ядер, отграниченных друг от друга прослойками белого вещества. Ядра связаны между собой ассоциативными волокнами. В вентральных ядрах таламической области заканчиваются восходящие чувствительные пути. От них нервные импульсы передаются коре. Нервные импульсы к зрительному бугру из головного мозга идут по экстрапирамидному двигательному пути.
В каудальной группе ядер (подушка зрительного бугра) заканчиваются волокна зрительного пути.
Гипоталамическая область — важный вегетативный центр головного мозга, регулирующий температуру, кровяное давление, водный, жировой обмен и др. Гипоталамическая область у человека состоит из 7 групп ядер.
Мозжечок представляет собой центральный орган равновесия и координации движений. Он связан со стволом мозга «афферентными и эфферентными проводящими пучками, образующими в совокупности три пары ножек мозжечка. На поверхности мозжечка много извилин и бороздок, которые значительно увеличивают ее площадь (у взрослых людей 975—1500 см’). Борозды и извилины создают на разрезе характерную для мозжечка картину «древа жизни». Основная масса серого вещества в мозжечке располагается на поверхности и образует его кору. Меньшая часть серого вещества лежит глубоко в белом веществе в виде центральных ядер. В центре каждой извилины имеется тонкая прослойка белого вещества, покрытая слоем серого вещества — корой. В коре мозжечка различают наружный молекулярный (stratum moleculare), средний — ганглионарный слой или слой грушевидных нейронов (stratum neuronum piriformium) и внутренний—зернистый (stratum granulosum). Грушевидные нейроны (neuronum piriforme) имеют нейриты, которые, покидая кору мозжечка, образуют начальное звено его эфферентных тормозных путей. В ганглионарном слое клетки располагаются строго в один ряд. От их крупного (60х35 мкм) грушевидного тела в молекулярный слой отходит 2-3 дендрита, которые, обильно ветвясь, пронизывают всю толщу молекулярного слоя. Все ветви дендритов располагаются только в одной плоскости, перпендикулярной к направлению извилин, поэтому при поперечном и продольном сечении извилин дендриты грушевидных клеток выглядят различно. От основания тел этих клеток отходят нейриты, проходящие через зернистый слой коры мозжечка в белое вещество и заканчивающиеся на клетках ядер мозжечка. В пределах зернистого слоя от них отходят коллатерали, которые, возвращаясь в ганглионарный слой, вступают в синаптическую связь с соседними грушевидными нейронами.
Молекулярный слой содержит два основных вида нейронов: корзинчатые и звездчатые; Корзинчатые нейроны (neuronum corbiferum) находятся в нижней трети молекулярного слоя. Это неправильной формы мелкие клетки размером около 10— 20 мкм. Их тонкие длинные дендриты ветвятся преимущественно в плоскости, расположенной поперечно к извилине. Длинные нейриты клеток всегда идут поперек извилины и параллельно поверхности над грушевидными нейронами. Они отдают коллатерали, спускающиеся к телам грушевидных нейронов, и совместно с другими волокнами, густо оплетая грушевидные нейроны, формируют на них характерную структуру корзинок нервных волокон (corbis neurofibrarum). Активность нейритов корзинчатых нейронов вызывает торможение грушевидных нейронов.
Звездчатые нейроны-(neuronum stellatum) лежат выше корзинчатых и бывают двух типов. Мелкие звездчатые нейроны снабжены тонкими короткими дендритами и слаборазветвленными нейритами, образующими синапсы на дендритах грушевидных клеток. Крупные звездчатые нейроны в отличие от мелких имеют длинные и сильно разветвленные дендриты и нейриты. Ветви их нейритов соединяются с дендритами грушевидных клеток, но некоторые из них достигают тел грушевидных клеток и входят в состав так называемых корзинок. Корзинчатые и звездчатые нейроны молекулярного слоя представляют собой единую систему вставочных нейронов, передающую тормозные нервные импульсы на дендриты и тела грушевидных клеток в плоскости, поперечной извилинам.
Очень богат нейронами зернистый слой. Он характеризуется особыми клеточными фермами, получившими название зерновидных нейронов, или клеток-зерен (neuronum granuliformis). У них маленький по объему (5—8 мкм в диаметре) бедный цитоплазмой перикарион с круглым крупным ядром. Клетка имеет 3— 4 коротких дендрита, заканчивающихся в этом же слое концевыми ветвлениями в виде лапки птицы. Вступая в синаптическую связь с окончаниями приходящих в мозжечок возбуждающих афферентных (моховидных) волокон, дендриты клеток-зерен образуют характерные структуры, именуемые клубочками мозжечка (glomerulus cerebellaris).
Нейриты клеток-зерен проходят в молекулярный слой и в нем Т-образно делятся на две ветви, ориентированные параллельно поверхности коры вдоль извилин мозжечка. Преодолевая большие расстояния, эти параллельные волокна пересекают ветвления дендритов многих грушевидных клеток и образуют с ними и дендритами корзинчатых и звездчатых нейронов синапсы. Таким образом, нейриты клеток-зерен передают возбуждение, полученное ими от моховидных волокон, на значительное расстояние многим грушевидным клеткам.
Вторым типом клеток зернистого слоя мозжечка являются тормозные большие звездчатые нейроны (neuronum stellatum magnum). Различают два вида таких клеток: с короткими и длинными нейритами. Нейроны с короткими нейритами (neuronum stellatum breviacsonicum) лежат вблизи ганглионарного слоя. Их разветвленные дендриты распространяются в молекулярном слое и образуют синапсы с параллельными волокнами — аксонами клеток-зерен. Нейриты направляются в зернистый слой к клубочкам мозжечка и заканчиваются синапсами на концевых ветвлениях дендритов клеток-зерен проксимальнее синапсов моховидных волокон. Возбуждение звездчатых нейронов может блокировать импульсы, поступающие по моховидным волокнам. Немногочисленные звездчатые нейроны с длинными нейритами (neuronum stellatum longiaxsonicum) имеют обильно ветвящиеся в зернистом слое дендриты и нейриты, выходящие в белое вещество. Предполагают, что эти клетки обеспечивают связь между различными областями коры мозжечка.
Третий вид клеток составляют веретеновидные горизонтальные клетки (neuronum fusiformie horizontale). Они встречаются преимущественно между зернистым и ганглионарным слоями, имеют небольшое вытянутое тело, от которого в обе стороны отходят длинные горизонтальные дендриты, заканчивающиеся в ганглионарном и зернистом слоях. Нейриты же этих клеток дают коллатерали в зернистый слой и уходят в белое вещество.
Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами — моховидными и так называемыми лазящими волокнами. Моховидные волокна идут в составе оливомозжечкового и мостомозжечкового путей и опосредованно через клетки-зерна оказывают на грушевидные клетки возбуждающее действие. Они заканчиваются в клубочках (glornerulus) зернистого слоя мозжечка, где вступают в контакт с дендритами клеток-зерен. Каждое волокно дает ветви к многим клубочкам мозжечка, и каждый клубочек получает ветви от многих моховидных волокон. Нейриты клеток-зерен по параллельным волокнам молекулярного слоя передают импульс дендритам грушевидных, корзинчатых, звездчатых нейронов, больших звездчатых нейронов зернистого слоя. Лазящие волокна поступают в кору мозжечка, по-видимому, по спинно-мозжечковому и вестибуломозжечковому путям. Они пересекают зернистый слой, прилегают к грушевидным нейронам и стелются по их дендритам, заканчиваясь на их поверхности синапсами. Лазящие волокна передают возбуждение непосредственно грушевидным нейронам. Дегенерация грушевидных нейронов ведет к расстройству координации движений.
Таким образом, возбуждающие импульсы, поступающие в кору мозжечка, достигают грушевидных нейронов или непосредственно по лазящим волокнам, или по параллельным волокнам клеток-зерен. Торможение—функция звездчатых нейронов молекулярного слоя, корзинчатых нейронов, а также больших звездчатых нейронов зернистого слоя. Нейриты двух первых, следуя поперек извилин и тормозя активность грушевидных клеток, ограничивают их возбуждение узкими дискретными зонами коры. Поступление в кору мозжечка возбуждающих сигналов по моховидным волокнам, через клетки-зерна и параллельные волокна может быть прервано тормозными синапсами больших звездчатых нейронов, локализованными на концевых ветвлениях дендритов клеток-зерен проксимальнее возбуждающих синапсов.
Кора мозжечка содержит различные глиальные элементы. В зернистом слое имеются волокнистые и плазматические астроциты. Ножки отростков волокнистых астроцитов образуют периваскулярные мембраны. Во всех слоях в мозжечке имеются элементы олигодендроглии. Особенно богаты этими клетками зернистый слой и белое вещество мозжечка. В ганглионарном слое между грушевидными нейронами лежат глиальные клетки с темными ядрами. Отростки этих клеток направляются к поверхности коры и образуют глиальные волокна молекулярного слоя мозжечка, поддерживающие ветвления дендритов грушевидных клеток (gliofibra sustentans). Глиальные макрофаги в большом количестве содержатся в молекулярном и ганглионарном слоях.
Кора большого мозга
Развитие коры больших полушарий (неокортекса) млекопитающих и человека в эмбриогенезе происходит из вентрикулярной герминативной зоны конечного мозга, где расположены малоспециализированные пролиферирующие клетки. Из этих клеток дифференцируются нейроциты неокортекса. При этом клетки утрачивают способность к делению и мигрируют в формирующуюся корковую пластинку вдоль вертикально ориентированных волокон эмбриональных радиальных глиоцитов, исчезающих после рождения. Вначале в корковую пластинку поступают нейроциты будущих 1 и VI слоев, т. е. наиболее поверхностного и глубокого слоев коры. Затем, как бы раздвигая эту первичную корковую закладку, в нее встраиваются в направлении изнутри и кнаружи последовательно нейроны V, IV, III и II слоев. Этот процесс осуществляется за счет образования клеток в небольших участках вентрикулярной зоны в различные периоды эмбриогенеза (гетерохронно). В каждом из этих участков образуются группы нейронов, последовательно выстраивающихся вдоль одного или нескольких волокон радиальной глии в виде колонки. Подобные, так называемые онтогенетические колонки в дальнейшем служат основой для формирования функциональных интегративных единиц неокортекса: мини- и макроколонок. Для установления сроков формирования в эмбриогенезе различных групп нейронов применяют радиоизотопный метод.
Строение. Кора большого мозга представлена слоем серого вещества толщиной около 3 мм. Наиболее сильно развита она в передней центральной извилине, где толщина коры достигает 5 мм. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга. В коре содержится около 10—14 млрд. нервных клеток. Различные участки ее, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представляют собой места высшего анализа и синтеза нервных импульсов. Резко очерченные границы между ними отсутствуют. Для коры характерно расположение клеток и волокон слоями.
Цитоархитектоника коры большого мозга. Мультиполярные нейроны коры весьма разнообразны по форме. Среди них можно выделить пирамидные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны. Пирамидные нейроны составляют основную и наиболее специфическую для коры большого мозга форму. Размеры их варьируют от 10 до 140 мкм. Они имеют вытянутое треугольное тело, вершина которого обращена к поверхности коры. От вершины и боковых поверхностей тела отходят дендриты, заканчивающиеся в различных слоях серого вещества. От основания пирамидных клеток берут начало нейриты, в одних клетках короткие, образующие ветвления в пределах данного участка коры, в других — длинные, поступающие в белое вещество.
Пирамидные клетки различных слоев коры отличаются размерами и имеют различное функциональное значение. Мелкие клетки представляют собой вставочные нейроны, нейриты которых связывают отдельные участки коры одного полушария (ассоциативные нейроны) или двух полушарий (комиссуральные нейроны). Эти клетки встречаются в разных количествах во всех слоях коры.
Особенно богата ими кора большого мозга человека. Нейриты крупных пирамид принимают участие в образовании пирамидных путей, проецирующих импульсы в соответствующие центры ствола и спинного мозга.
Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В двигательной зоне коры различают 6 основных слоев: 1 — молекулярный (lamina molecularis), II — наружный зернистый (lamina granularis externa), III — пирамидных нейронов (lamina piramidalis), IV — внутренний зернистый (lamina granularis interna), V — ганглионарный (lamina ganglionaris), V1— слой полиморфных клеток (lamma multiformis).
В период эмбрионального развития первыми на 6-м месяце дифференцируются V и VI слои, а II, III и IV слои развиваются позднее — на 8-м месяце внутриутробного развития.
Молекулярный слой коры содержит небольшое количество мелких ассоциативных клеток веретеновидной формы. Их нейриты проходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя. Однако основная масса волокон этого сплетения представлена ветвлениями дендритов нижележащих слоев.
Наружный зернистый слой образован мелкими нейронами диаметром около 10 мкм, имеющими округлую, угловатую и пирамидальную форму, и звездчатыми нейроцитами. Дендриты этих клеток поднимаются в молекулярный слой. Нейриты или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя.
Самый широкий слой коры большого мозга — пирамидный. Он особенно хорошо развит в прецентральной извилине. Величина пирамидных клеток последовательно увеличивается в пределах 10— 40 мкм от наружной зоны этого слоя к внутренней. От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Дендриты, берущие начало от боковых поверхностей пирамиды и ее основания, имеют незначительную длину и образуют синапсы со смежными клетками этого слоя. Нейрит пирамидной клетки всегда отходит от ее основания. В мелких клетках он остается в пределах коры; аксон же, принадлежащий крупной пирамиде, обычно формирует миелиновое ассоциативное иди комиссуральное волокно, идущее в белое вещество.
Внутренний зернистый слой в некоторых полях коры развит очень сильно (например, в зрительной зоне коры). Однако он может почти отсутствовать (в прецентральной извилине). Этот слой образован мелкими звездчатыми нейронами. В его состав входит большое количество горизонтальных волокон.
Ганглионарный слой коры образован крупными пирамидами, причем область прецентральной извилины содержит гигантские пирамиды, описанные впервые киевским анатомом В. А. Бецем в 1874 г. (клетки Беца). Это очень крупные клетки, достигающие в высоту 120 мкм и в ширину 80 мкм. В отличие от других пирамидных клеток коры гигантские пирамиды характеризуются наличием крупных глыбок хроматофильного вещества. Нейриты клеток этого слоя образуют главную часть кортико-спинальных и кортико-нуклеарных путей и оканчиваются синапсами на клетках моторных ядер.
Слой полиморфных клеток образован нейронами различной, преимущественно веретенообразной, формы. Внешняя зона этого слоя содержит более крупные клетки. Нейроны внутренней зоны мельче и лежат на большом расстоянии друг от друга. Нейриты клеток полиморфного слоя уходят в белое вещество в составе эфферентных путей головного мозга. Дендриты достигают молекулярного слоя коры.
Крупные пирамидные клетки являются основными нейронами, к которым по центрифугальным волокнам приходят импульсы из других отделов центральной нервной системы и передаются через синапсы на их дендриты и тела. От больших пирамид импульс уходит по аксонам, формирующим ценгдипетальные эфферентные пути. Внутри коры между нейронами формируются сложные связи.
Исследуя ассоциативную кору, составляющую 90% неокортекса, Сентаготаи и представители его школы установили, что структурно-функциональной единицей неокортекса является модуль — вертикальная колонка диаметром около 300 мкм. Модуль организован вокруг кортико-кортикального волокна, представляющего собой волокно, идущее либо от пирамидных клеток того же полушария (ассоциативное волокно), либо от противоположного (комиссуральное). В модуль входят два таламо-кортикальных волокна — специфических афферентных волокна, оканчивающихся в IV слое коры на шипиковых звездчатых нейронах и базальных дендритах пирамидных нейронов. Каждый модуль, по мнению Сентанотаи, подразделяется на два микромодуля диаметром менее 100 мкм. Всего в неокортексе человека примерно 3 млн. модулей. Аксоны пирамидных нейронов модуля проецируются на три модуля той же стороны и через мозолистое тело на два модуля противоположного полушария. В отличие от специфических афферентных волокон, оканчивающихся в IV слое коры, кортико-кортикальные волокна образуют окончания во всех слоях коры и, достигая 1 слоя, дают горизонтальные ветви, выходящие далеко за пределы модуля. Помимо специфических афферентных волокон, на выходные пирамидные нейроны возбуждающее влияние оказывают шипиковые звездчатые нейроны. Различают два типа шипиковых звездчатых клеток: 1) шипиковые звездчатые нейроны фокального типа, образующие множественные синапсы на апикальных дендритах пирамидного нейрона, и 2) шипиковые звездчатые нейроны диффузного типа, аксоны которых широко ветвятся в V слое и возбуждают базальные дендриты пирамидных нейронов. Коллатерали аксонов пирамидных нейронов вызывают диффузное возбуждение соседних пирамид.
Тормозная система модуля представлена следующими типами нейронов: 1) клетки с аксональной кисточкой образуют в 1 слое множественные тормозные синапсы на горизонтальных ветвях кортико-кортикальных волокон; 2) корзинчатые нейроны — тормозные нейроны, образующие тормозящие синапсы на телах практически всех пирамид. Они подразделяются на малые корзинчатые нейроны, оказывающие тормозящее влияние на пирамиды II, III и V слоев модуля, и большие корзинчатые клетки, располагающиеся на периферии модуля и имеющие тенденцию подавлять пирамидные нейроны соседних модулей; 3) аксоаксональные нейроны, тормозящие пирамидные нейроны II и III слоев. Каждая такая клетка образует тормозящие синапсы на начальных участках аксонов сотен нейронов II и III слоев. Они тормозят, таким образом, кортико-кортикальные волокна, но не проекционные волокна нейронов V слоя; 4) клетки с двойным букетом дендритов располагаются во II и III слоях и, тормозя практически все тормозные нейроны, производят вторичное возбуждающее действие на пирамидные нейроны. Ветви их аксонов направлены вверх и вниз и распространяются в узкой колонке (50 мкм). Таким образом, клетка с двойным букетом дендритов растормаживает пирамидные нейроны в микромодуле (в колонке диаметром 50—100 мкм). Мощный возбуждающий эффект фокальных шипиковых звездчатых клеток объясняется тем, что они одновременно возбуждают пирамидные нейроны и клетку с двойным букетом дендритов. Таким образом, первые три тормозных нейрона тормозят пирамидные клетки, а клетки с двойным букетом дендритов возбуждают их, тормозя тормозные нейроны.
Система тормозных нейронов играет роль фильтра, тормозящего часть пирамидных нейронов коры. Кора различных полей характеризуется преимущественным развитием тех или других ее слоев. Так, в моторных центрах коры, например в передней центральной извилине, сильно развиты III, V и VI слои и плохо выражены II и IV. Это так называемый агранулярный тип коры. Из этих областей берут начало нисходящие проводящие пути центральной нервной системы. В чувствительных корковых центрах, где заканчиваются афферентные проводники, идущие от органов обоняния, слуха и зрения, слабо развиты слои, содержащие крупные и средние пирамиды, тогда как зернистые слои (II и IV) достигают своего максимального развития. Это гранулярный тип коры.
Миелоархитектоника коры. Среди нервных волокон коры полушарий большого мозга можно выделить: ассоциативные волокна, связывающие отдельные участки коры одного полушария, комиссуральные, соединяющие кору различных полушарий, и проекционные волокна, как афферентные, так и эфферентные, которые связывают кору с ядрами низших отделов центральной нервной системы. Эти волокна в коре полушарий образуют радиальные лучи, заканчивающиеся в пирамидном слое. Кроме уже описанного тангенциального сплетения молекулярного слоя, на уровне внутреннего зернистого и ганглионарного слоев расположены два тангенциальных слоя миелиновых нервных волокон — внешняя и внутренняя полосы, которые, очевидно, образуются концевыми ветвлениями афферентных волокон и коллатералей нейритов клеток коры, таких как пирамидные нейроны. Вступая в синаптические связи с нейронами коры, горизонтальные волокна обеспечивают широкое распространение в ней нервного импульса. Строение коры в различных отделах большого мозга сильно варьирует, поэтому детальное изучение ее клеточного состава и хода волокон является предметом специального курса. Кора полушарий головного мозга содержит мощный нейроглиальный аппарат, выполняющий трофическую, защитную, опорную и разграничительную функции.