в коллекторах какого типа сосредоточено более половины современных мировых запасов углеводородов
Запасы нефти и газа. Классификация
С 1 января 2012 года в РФ действует классификация запасов нефти и газа
Классификация по категориям:
Запасы:
Ресурсы:
Приказом МПР РФ от 7 марта 1997 г № 40 определялись:
Запасы
Ресурсы
По мнению экспертов новая классификация завышает объем экономически эффективных извлекаемых запасов.
Мейджоры нередко проводят аудит запасов по PRMS, и полученные данные обычно оказываются примерно на 30% меньше, чем в рамках российской классификации.
Классификация месторождений по сложности геологического строения и величине запасов
1 группа. Месторождения (залежи) простого внутреннего строения, связанные с ненарушенными или слабонарушенными структурами; продуктивные нефте-или газонасыщенные пласты представлены коллекторами порового типа и характеризуются выдержанностью толщин и коллекторских свойств по площади и разрезу.
2 группа. Месторождения (залежи) сложного строения; продуктивные нефте- или газонасыщенные, в отдельных случаях с нефтяной оторочкой пласты представлены коллекторами в основном порового типа и характеризуются невыдержанностью толщин и коллекторских свойств по площади и разрезу, наличием литологических замещений коллекторов непроницаемыми породами либо тектонических нарушений.
3 группа. Месторождения (залежи) очень сложного строения, характеризующиеся варьирующими по площади ВНК и ГНК, наличием или литологических замещений, или тектонических нарушений, или очень изменчивых толщин и коллекторских свойств продуктивных пластов, представленных в основном коллекторами с вторичной пустотностью.
При отнесении месторождений (залежей) к той или иной группе сложности геологического строения могут использоваться количественные критерии показателей неоднородности продуктивных пластов.
Классификация месторождений нефти и газа по величине извлекаемых запасов нефти и балансовых запасов газа:
Классификация месторождений по степени их изученности:
Разведанные месторождения (залежи) по степени изученности должны удовлетворять следующим требованиям:
Запасы таких месторождений (залежей) по степени изученности квалифицируются обычно по категории С2 и служат основанием для проектирования на их базе дальнейших разведочных работ и частично опытно-промышленной разработки.
Откуда берется нефть
Нефтяные месторождения — уникальное хранилище энергии, образованной и накопленной на протяжении миллионов лет в недрах нашей планеты. В этом материале — о том, какой путь проделала нефть, прежде чем там оказаться, из чего она состоит и какими свойствами обладает
Две гипотезы
У ученых до сих пор нет единого мнения о том, как образовалась нефть. Существуют две принципиально разные теории происхождения нефти. Согласно первой — органической, или биогенной, — из останков древних организмов и растений, которые на протяжении миллионов лет осаждались на дне морей или захоронялись в континентальных условиях. Затем перерабатывались сообществами микроорганизмов и преобразовывались под действием температуры и давлений в результате тектонического опускания вглубь недр, формируя богатые органическим веществом нефтематеринские породы.
Необходимые условия для превращения органики в нефть возникают на глубине в так называемом нефтяном окне — при температуре от 70 до 190°C. В верхней его части температура недостаточно высока — и нефть получается «тяжелой»: вязкой, густой, с высоким содержанием смол и асфальтенов. Внизу же температура пластов поднимается настолько, что молекулы органического вещества дробятся на самые простые углеводороды — образуется природный газ. Затем под воздействием различных сил, в том числе градиента Градиент давления характеризует степень изменения давления в пространстве, в данном случае — в зависимости от глубины пласта давления, углеводороды мигрируют из нефтематеринского пласта в выше- или нижележащие породы.
60 млн лет может занимать природный процесс образования нефти из органических останков
Природный процесс образования нефти из органических останков занимает в среднем от 10 до 60 млн лет, но если для органического вещества искусственно создать соответствующий температурный режим, то на его переход в растворимое состояние с образованием всех основных классов углеводородов достаточно часа. Подобные опыты сторонники органической гипотезы толкуют в свою пользу: преобразование органики в нефть налицо. В пользу биогенного происхождения нефти есть и другие аргументы. Так, большинство промышленных скоплений нефти связано с осадочными породами. Мало того — живая материя и нефть сходны по элементному и изотопному составу. В частности, в большинстве нефтяных месторождений обнаруживаются биомаркеры, такие как порфирины — пигменты хлорофилла, широко распространенные в живой природе. Еще более убедительным можно считать совпадение изотопного состава углерода биомаркеров и других углеводородов нефти.
Состав и свойства нефти
ХАРАКТЕРИСТИКИ НЕФТИ МОГУТ ЗНАЧИТЕЛЬНО РАЗЛИЧАТЬСЯ ДЛЯ РАЗНЫХ МЕСТОРОЖДЕНИЙ
Основные химические элементы, из которых состоит нефть: углерод — водород — и сера — до 7%. Последняя обычно присутствует в виде сероводорода или меркаптанов, которые могут вызывать коррозию оборудования. Также в нефтях присутствует до 1,7% азота и до 3,5% кислорода в виде разнообразных соединений. В очень небольших количествах в нефтях содержатся редкие металлы (например, V, Ni и др.).
От месторождения к месторождению характеристики и состав нефти могут различаться очень значительно. Ее плотность колеблется от 0,77 до 1,1 г/см³. Чаще всего встречаются нефти с плотностью кипения варьирует от 30 до 600°C в зависимости от химического состава. На этом свойстве основана разгонка нефтей на фракции. Вязкость сильно меняется в зависимости от температуры. Поверхностное натяжение может быть различным, но всегда меньше, чем у воды: это свойство используется для вытеснения нефти водой из пор пород-коллекторов.
Большинство ученых сегодня объясняют происхождение нефти биогенной теорией. Однако и неорганики приводят ряд аргументов в пользу своей точки зрения. Есть различные версии возможного неорганического происхождения нефти в недрах земли и других космических тел, но все они опираются на одни и те же факты. Во-первых, многие, хотя и не все месторождения связаны с зонами разломов. Через эти разломы, по мнению сторонников неорганической концепции, нефть и поднимается с больших глубин ближе к поверхности Земли. Во-вторых, месторождения бывают не только в осадочных, но также в магматических и метаморфических горных породах (впрочем, они могли оказаться там и в результате миграции). Кроме того, углеводороды встречаются в веществе, извергающемся из вулканов. Наконец, третий, наиболее весомый аргумент в пользу неорганической теории состоит в том, что углеводороды есть не только на Земле, но и в метеоритах, хвостах комет, в атмосфере других планет и в рассеянном космическом веществе. Так, присутствие метана отмечено на Юпитере, Сатурне, Уране и Нептуне. На Титане, спутнике Сатурна, обнаружены реки и озера, состоящие из смеси метана, этана, пропана, этилена и ацетилена. Если на других планетах Солнечной системы эти вещества могут образовываться без участия биологических объектов, почему это невозможно на Земле?
Этапы образования нефти
СТАДИИ ОБРАЗОВАНИЯ ОСАДОЧНЫХ ПОРОД И ПРЕОБРАЗОВАНИЯ НЕФТИ
В ловушке
Помимо чисто научного интереса гипотезы, объясняющие происхождение нефти и газа, имеют еще и политическое звучание. Действительно, раз уж нефть может получаться из неорганических веществ и темпы ее образования не десятки миллионов лет, как предполагает биогенная концепция, а во много тысяч раз выше, значит, проблема скорого исчерпания запасов становится как минимум не столь однозначной. Однако для нефтяников вопрос о том, откуда берется нефть, принципиален скорее с той точки зрения, может ли теория предсказать, где именно нужно искать месторождения. С этой задачей органики справляются лучше.
В сугубо прагматическом отношении для добычи важно знать даже не то, где нефть зародилась, а где она находится сейчас и откуда ее можно извлечь. Дело в том, что в земной коре большая часть нефти не остается в материнской породе, а перемещается и скапливается в особых геологических объектах, называемых ловушками. Даже если предположить, что нефть имеет неорганическое происхождение, ловушки для нее все равно за редким исключением находятся в осадочных бассейнах.
Под действием различных факторов углеводороды отжимаются из нефтематеринских пород в породы-коллекторы, способные вмещать флюиды (нефть, природный газ, воду). Таким образом, нефтяное месторождение — вовсе не подземное «озеро», заполненное жидкостью, а достаточно плотная структура. Коллекторы характеризуются пористостью (долей содержащихся в них пустот) и проницаемостью (способностью пропускать через себя флюид). Для эффективного извлечения нефти из коллектора важно благоприятное сочетание обоих этих параметров.
Типы коллекторов
БОЛЬШАЯ ЧАСТЬ ЗАПАСОВ НЕФТИ СОДЕРЖИТСЯ В ДВУХ ТИПАХ КОЛЛЕКТОРОВ
Терригенные (пески, песчаники, алевролиты, некоторые глинистые породы и др.) состоят из обломков горных пород и минералов. Этот тип коллекторов наиболее распространен: на них приходится 58% мировых запасов нефти и 77% газа. В качестве пустотного пространства, в котором накапливается нефть, в основном выступают поры — свободное пространство между зернами, из которых состоит коллектор.
Карбонатные (в основном известняки и доломиты) занимают второе место по распространенности (42% запасов нефти и 23% газа). Имеют сложную трещиноватую структуру. Нефть обычно содержится в кавернах, появившихся в результате выветривания и вымывания твердой породы, а также в трещинах. Наличие трещин влияет и на фильтрационные свойства коллектора, обеспечивая проводимость жидкости.
Вулканогенные и вулканогенно-осадочные (кислые эффузивы и интрузивы, пемзы, туфы, туфопесчаники и др.) коллекторы отличаются характером пустотного пространства — в основном это трещины, — резкой изменчивостью свойств в пределах месторождений.
Глинисто-кремнисто-битуминозные отличаются значительной изменчивостью состава, неодинаковой обогащенностью органическим веществом. Промышленная нефтеносность глинисто-кремнисто-битуминозных пород установлена в баженовской (Западная Сибирь) и пиленгской (Сахалин) свитах.
Двигаясь по коллектору, флюид в какой-то момент может упереться в непроницаемый для него экран — флюидоупор. Слои такой породы называют покрышками, а вместе с коллектором они формируют ловушки, удерживающие нефть и газ в месторождении. В классическом варианте в верхней части ловушки может присутствовать газ (он легче). Снизу залежь подстилается более плотной, чем нефть, водой.
Классификации ловушек чрезвычайно разнообразны (часть из них см. на рис.). Наиболее простая и с точки зрения геологоразведки, и для дальнейшей добычи — антиклинальная ловушка (сводовое поднятие), перекрытая сверху пластом флюидоупора. Такие ловушки образуются в результате изгибов пластов осадочного чехла. Однако помимо изгибов внутренние пласты претерпевают и множество других деформаций. В результате тектонических движений, например, пластколлектор может деформироваться и потерять свою однородность. В этом случае процессы геологоразведки и добычи оказываются намного сложнее. Еще одна неприятность, которая поджидает нефтяников со стороны ловушек, — замещение проницаемых пород, обладающих хорошими коллекторскими свойствами, например песчаников, непроницаемыми. Такие ловушки называются литологическими.
Сколько нефти осталось в мире и какое у нее будущее
Что значит нефть для промышленности и экономики?
Нефть сыграла ключевую роль во время Второй промышленной революции во второй половине XIX — начале XX века. Именно тогда — в 1859-м — зародилась нефтяная промышленность, объединив добычу и переработку нефти. В этом году была основана Pennsylvania Rock Oil — первая компания по добыче нефти в штате Пенсильвания.
Сначала из нефти делали керосин, на котором работали, например, настольные лампы. А затем — топливо, которое стало востребованным с развитием автомобилестроения, железнодорожного транспорта и авиации. Так бензин пришел на смену газу и паровым двигателям.
Но к концу ХХ века роль нефти стала заметно падать: появились альтернативные источники топлива и энергии, а Четвертая индустриальная революция базируется уже на совсем других факторах. Главные «двигатели прогресса» теперь — цифровые, а мировая индустрия стремится к наиболее экологичным альтернативам нефти.
Для мировой экономики нефть — один из базовых и самых динамичных рынков: здесь всегда есть активный спрос и предложение, высокая конкуренция и продвинутые механизмы для регулирования. Страны, обладающие нефтяными месторождениями, строят долгосрочные стратегии и планируют бюджеты с опорой на рынок нефти. Исчезновение этой опоры чревато затяжными глобальными кризисами.
Почему нефть не закончится
Артем Козинов называет 5 главных причин:
Мы до сих пор не знаем, как образуется нефть. На этот счет есть 2 теории: органическая и неорганическая. Сторонники первой считают, что углеводороды появились в древности из органического вещества и планктона под воздействием высоких температур и давления. Вторые полагают, что нефть образовалась на большой глубине в мантии Земли из-за сложных химических реакций. Но обе теории говорят о том, что нефть возобновляема;
Нефть не всегда зарождается там, где ее добывают. Это также следует из теорий ее происхождения и означает, что новейшие методы разработки позволят снова и снова добывать нефть в нужных количествах;
Человечество добывает меньше половины мировых запасов нефти. Даже при интенсивной добыче в нефтяных месторождениях мы извлекаем лишь меньшую часть углеводородов;
Нефть добывают далеко не из всех открытых месторождений. Многие из них пока плохо исследованы и не освоены;
Многие месторождения до сих пор не обнаружены.
Дополнительным фактором служит то, что добыча нефти ограничена международными организациями — такими, как ОПЕК и Международное энергетическое агентство.
Нефть vs альтернативные источники энергии
Есть и другие, возобновляемые источники энергии. Именно на них переключаются крупнейшие страны-потребители энергии, считая такой способ генерации энергии более экологичным. Вторая причина перехода на альтернативные источники — перестать зависеть от нефтяных держав, которые используют нефть в геополитических целях.
Объем инвестиций стран и регионов в возобновляемые источники энергии и альтернативные виды топлива
Основные виды возобновляемых источников энергии ( ВИЭ):
Самый распространенный способ, при котором энергию вырабатывают с помощью плотины и турбин, которые вращают воду внутри. Потенциальная емкость гидроэнергетических станций — 30-40 Тераватт-час в год. Однако этот способ приводит к изменению уровня воды в водоемах, сокращению в них кислорода, нарушению нерестового цикла рыб и другим негативным последствиям для флоры и фауны.
Энергия также вырабатывается с помощью турбин, которые вращают ветер. Они гораздо дешевле, чем водяные, располагаются на высоте от 100 метров: это значит, что землю под ними можно использовать под сельхозугодья.
Дания, Германия и Нидерланды к 2050 году планируют возвести искусственный остров в море и разместить на нем ветроэнергетическую станцию, которая сможет вырабатывать до 100 Гигаватт/час энергии в год.
Главный минус этого источника — нестабильность: нужно дожидаться ветра, причем определенной силы. Это возможно только вдали от населенных пунктов, а значит, доставка энергии будет слишком дорогой.
Такие станции могут быть устроены по-разному: например, накапливать солнечный свет с помощью батарей, которые преобразуют его в энергию. Второй способ гораздо проще и популярнее, но во многих северных регионах солнечного света не хватает для того, чтобы полностью обеспечивать их энергией. И даже в очень солнечных местах есть смена суток и сезонов, поэтому выработка энергии будет неравномерной.
В этом случае специальные модули качаются на волнах и генерируют энергию из движения. Помимо генерации дешевого электричества такие станции защищают берега, а также мосты и опоры от разрушения. Однако их потенциал — всего 2 Тераватт-час в год, они могут быть опасны для водного транспорта и создают шум, который пугает водных обитателей.
На глубине роют две скважины, в одну из которых подают воду. Она испаряется, нагреваясь от земли, пар проходит через вторую скважину и по трубам направляется в турбины, попутно очищаясь от примесей. Это достаточно стабильный источник энергии, потенциал которого — 47 Тераватт-час в год. Однако сейчас мы можем получить лишь 2% от этого объема.
Билл Гейтс, один из влиятельнейших идеологов ВИЭ, в одном из интервью приводит такие цифры: в Токио 3 дня в году действует циклон, из которого можно было бы сгенерировать колоссальное количество энергии. Этого хватило бы на весь 27-миллионный мегаполис. При этом электричество, полученное традиционным способом, создает 25% от всех вредных выбросов.
Недостатки возобновляемой энергетики
ВИЭ дешево добывать, но дорого передавать. По данным Международного энергетического агентства, передача энергии, полученной из ветра, в 3 раза дороже, чем из угля. То же самое можно сказать и про ядерную энергетику. Это связано еще и с тем, что добывать энергию с помощью ВИЭ можно лишь вдали от населенных пунктов — то есть главных потребителей. Нужно заново построить целую инфраструктуру для передачи энергии;
Нестабильность источников. Получать энергию из ветра можно только 25-35% времени, из солнца — 10-25%. Уровень контроля в таких энергосетях тоже намного ниже, а мощность сложно стабилизировать;
Современные аккумуляторы пока не могут накапливать достаточно энергии от ВИЭ, чтобы ей можно было пользоваться, пока станции простаивают;
Чтобы построить станции для генерации энергии из альтернативных источников, нужны все те же углеводороды, которые пока что нечем заменить;
Наконец, самое главное: альтернативные источники энергии пока что не покрывают всех потребностей. На данный момент их главный плюс — экологичность и быстрая возобновляемость.
Ежегодное увеличение мощности возобновляемых источников энергии (в гигаваттах)
Как будет развиваться энергетика дальше?
Центр энергетики «Сколково», совместно с Институтом энергетических исследований (ИНЭИ) РАН, представил свой прогноз до 2040 года. Из него следует, что мировая энергетика уже находится на пороге глобальной трансформации — «четвертого энергоперехода»: первый был связан с развитием добычи угля, второй — нефти, третий — газа. Это значит, что доля ВИЭ будет нарастать, вытесняя нефть и газ.
В прогнозе описаны 3 сценария:
Консервативный : технологии и потребление энергии останутся на текущем уровне или вырастут незначительно. Доля ВИЭ в мире составит 35%, в России — 15%;
Инновационный : ускорение развития технологий и перехода на ВИЭ. Распределение долей — 40% и 16% соответственно;
Энергопереход : еще большее ускорение технологий и особый акцент в политике государств на отказе от углеводородов. В этом случае в мире на ВИЭ будет приходиться 49%, в России — 21%.
По мнению авторов исследования, все три сценария для России будут негативными: первыми сократятся поставки именно российской нефти, что обернется для нас долгосрочной экономической стагнацией. В России уже готовятся к такому сценарию: действует госпрограмма поддержки развития ВИЭ до 2035 года. Она предполагает, что всем станциям на основе ВИЭ вернут инвестиции. Это поможет сделать «зеленую» энергию дешевле и доступнее, а ее доля в общей выработке вырастет до 3,3%.
Когда мы откажемся от нефти?
Сегодня нефть по-прежнему является топливом № 1 в мире: доля ее потребления — 31%, то есть выше, чем уголь, газ и возобновляемые источники. Но это уже на 14% меньше, чем в начале 1970-х, на пике развития индустриальной экономики. Отчасти повлияли ограничения на добычу нефти, впервые введенные в 1973 году ОПЕК для борьбы с нефтяным кризисом.
Дальше будет примерно следующее:
Некоторые эксперты считают, что к 2050 году спрос на сырую нефть сократится до 14 млн баррелей в день (прогноз на 2021 год — 96,7 млн баррелей);
Потребление сырой нефти для нужд энергетики упадет с 11 до 4 млн баррелей в сутки. В падении спроса сыграет роль и то, что международные организации ставят целью перерабатывать до 75% всего пластика. Это, в свою очередь, сократит потребность в новых пластиковых изделиях, которые тоже производят из нефтепродуктов;
Спрос на нефтехимию — то есть продукты нефтепереработки — наоборот, в ближайшие 20-30 лет вырастет до 2 раз. За последние 10 лет он увеличился на 50%, за счет бурного роста городской инфраструктуры в США, Канаде, Японии, Китае и Южной Корее;
Потребление нефти в сферах строительства и сельского хозяйства вырастет, если прирост мирового населения останется на том же уровне. К 2050 году эти отрасли будут потреблять на 46% больше нефти, чем сейчас: 28 млн баррелей в день;
Другие эксперты отмечают влияние пандемии, которая привела к обвалу спроса на нефть, но в будущем все вернется к доковидным показателям — в основном, за счет развивающихся стран.
Крупнейшие мировые поставщики нефтепродуктов тоже пока не пришли к единому сценарию. К примеру, Exxon удваивает объем добычи, рассчитывая на устойчивый рост спроса на нефть и газ. В то же время BP, напротив, переходит на возобновляемые источники энергии.
Но все сходятся в том, что сейчас нефтяная отрасль переживает один из самых сложных периодов, начиная с 1960-х годов. При этом пик спроса на нефть уже пройден, а для газа он наступит в ближайшие 5 лет. Стратегия нефтяного рынка, безусловно, будет меняться. Но глобальный отказ от нефти мы увидим не раньше, чем через 20-30 лет, в том числе — из-за экологических факторов. К примеру, производство 1 кг литий-ионных аккумуляторов, на которых работают электрокары, приводит к выбросу 2,5 кг эквивалента CO2. При добыче 1 кг нефти этот показатель составляет 0,15 кг.
Артем Козинов добавляет, что углеводороды уникальны своей высокой энергоемкостью за счет особенных химических связей. Поэтому в ближайшие 80–100 лет нефть и газ гарантированно останутся главными источниками энергии.
Запасы и месторождения нефти и газа Мирового океана 1 часть
В пределах Мирового океана установлено около 70 нефтегазоносных или потенциально нефтегазоносных бассейнов или провинций.
В пределах Мирового океана установлено около 70 нефтегазоносных или потенциально нефтегазоносных бассейнов или провинций.
Генетически они разнородны, поэтому при анализе целесообразно сгруппировать их по географическому признаку в 7 основных регионов: Северный Ледовитый океан, Северная Атлантика, Южная Атлантика, западная часть Индийского океана, восточная часть Индийского океана, западная часть Тихого океана, восточная часть Тихого океана.

В целом, разведанные извлекаемые запасы углеводородов 16 морских месторождений Северо-Аляскинского бассейна составляют 1,5 млрд. т нефти и 750 млрд. м. газа. Потенциальные ресурсы оцениваются приблизительно в 3 млрд. т нефти и 1,7 трлн. м. газа.
Свердрупский нефтегазоносный бассейн имеет площадь280 тыс. км2 и занимает большую часть Арктического архипелага Канады. В его строении выделяют две впадины: Парри и Элемир, разделенные горстовидным поднятиями о. Амунд-Рингнес.
С 1969 г. в бассейне открыто 19 месторождений углеводородов, в том числе одно нефтяное. Наиболее крупные газовые месторождения Дрейк-Пойнт (142 млрд. м3) и Хекла (198 млрд. м3) находятся в: юго-западной части бассейна, на северном побережье о-ва Мелвилл. Месторождения связаны с антиклинальными структурами. В 1979 г. в процессе бурения с намороженных ледовых оснований на внутреннем шельфе архипелага Парри при глубине моря 277- 318 м были открыты крупные газовые месторождения Уайтфиш и Чар. Разведанные извлекаемые запасы газа в бассейне достигли, почти 600 млрд. м3.
В начале 80-х годов были выявлены залежи легкой нефти в рифовом массиве девонского возраста (месторождение Бент-Хорн), а также ряд нефтегазовых месторождении (Маклин, Скейт, Сиско). С их открытием извлекаемые запасы нефти в Свердрупском бассейне, достигли 213 млн. т. В целом, для этого бассейна потенциальные извлекаемые ресурсы углеводородов оцениваются в 250 млн. т нефти и 1,13 трлн. м3 газа. Суммарная оценка потенциальных нефтегазовых ресурсов юго-западной части Северного Ледовитого океана (Арктический мегабассейн Северной Америки) составляет: 2,5-4,2 млрд. т нефти и 3,4-4,5 трлн. м3 газа, или 5,2-7,8 млрд. т углеводородов в пересчете на нефть. Здесь уже выявлено 60 морских и прибрежно-морских месторождений, в том числе 35 нефтяных и нефтегазовых и 25 газовых и газоконденсатных.
Северная Атлантика. 
Нефтегазоносные бассейны Северной Атлантики располагаются в пределах подводных окраин Европейского и Северо-Американского материков, а также во внутренних морях типа Средиземного и Черного. К наиболее крупным нефтегазоносным бассейнам относятся: Норвежский, Североморский, Юго-Западной Европы, Лабрадорский, Мексиканский, Карибский, Западно-Средиземноморский, Адриатический, Восточно-Средиземноморский и Южно-Каспийский.
Норвежский нефтегазоносный бассейн расположен вдоль северо-западного побережья Скандинавского полуострова (Норвежское море).
Континентальный склон Норвежского моря осложнен краевым плато Беринг шириной около 200 км, опущенным на глубину до 1200 м и ограниченным с юго-запада поперечным разломом Ян-Майен. В восточной (внутренней) части плато находится рифтогенная впадина Беринг с осадочным чехлом мощностью более 8 км и утоненной до 15 км корой. Поисковое бурение начато в конце 70-х годов. В 1979 г. в Норвежском желобе на границе с Северным морем при глубине воды 340 м открыто газовое месторождение Тролл. Залежи находятся в хорошо проницаемых песчаниках юрского возраста. Освоение месторождения оценивается в 10 млрд. дол. Его детальная характеристика будет приведена позже.
В начале 80-х годов в северных районах Норвежского бассейна (юг Баренцева моря) установлены газовые залежи в триасовых и юрских песчаниках, залегающие на глубине 2,5 км, на площадях Тромсё и Хейдрун (банка Хальтен). На первой из них дебиты газа составили до 1 млн. м3 и конденсата до 30 м3 в сутки.
Грабен Экофиск (Центральный) с плотностью запасов 210 тыс. т/км2 содержит крупные газонефтяные месторождения Экофиск и Элдфиск, газоконденсатные месторождения Албускыл и Валгалл.
В грабенах Викинг, Фортиз и Экофиск, площадь которых 22 тыс. км2, сконцентрировано более половины разведанных запасов углеводородов Северного моря. На остальной площади Центрально-Североморской рифовой системы средняя плотность запасов 14 тыс. т/км2.
В Западно-Норвежском грабене в 1979 г. в водах глубиной 340 м открыто гигантское газонефтяное месторождение Тролл, приуроченное к антиклинальной складке площадью 700 км2.
В Южно-Североморской впадине установлены в основном газовые месторождения. Здесь известны такие крупные месторождения, как Леман, Индифатигейбл, Хьюитт, Вайкинг, Пласид. На суше находится гигантское газовое месторождение Гронинген (около 2 трлн. м3 газа).
Нефтегазоносный бассейн Юго-Западной Европы охватывает подводную ее окраину. В составе подводной окраины выделяют юго-западный шельф Франции в Бискайском заливе (Армориканский шельф), шельф Пиренейского полуострова (Испанский шельф) и Португальский шельф. Шельфовые зоны узкие (до 160 км), обрываются крутым континентальным склоном. Протяженность шельфов более 2500 км.
На Армориканском шельфе скважины, пробуренные до глубины 4,5 км, не дали положительных результатов. На шельфе Испании в 60 км от берега при глубине моря 146 м открыто нефтяное месторождение Кантабрико-Мар. Нефть легкая (0,837 г/см3), получена с глубины 1450 м из низов эоцена. В 13 км от порта Бермео (близ г. Бильбао) выявлено газовое месторождение с дебитом до 1,4 млн. м3/сут. В Кадисском заливе на продолжении Гвадалквивирской впадины при глубине моря 120 м открыто семь мелких газовых месторождений в песчаниках миоцена. На шельфе Португалии пробурено около 30 скважин, из которых только в трех обнаружена непромышленная нефть. Потенциальные ресурсы шельфа Юго-Западной Европы оцениваются невысоко: 0,3-0,6 млрд. т нефти и 0,1-0,3 трлн. м3 газа. Небольшие месторождения углеводородов открыты на шельфе Ирландского моря, в частности, газовое месторождение Кинсеил-Хед с запасами 40 млрд. м3 и месторождение нефти с запасами 40 млн. т (рифовая впадина Поркьюпайн).
Лабрадорский нефтегазоносный бассейн занимает северо-восточную часть атлантической окраины Северной Америки. В составе Лабрадорского нефтегазоносного бассейна можно выделить несколько нефтегазоносных областей (суббассейнов), из которых наиболее значительны Балтимор-Каньон, Новошотландская, Большой Ньюфаундлендской банки и Лабрадорская.
Нефтегазоносная область Балтимор-Каньон связана с грабенообразно впадиной размером 300X150 км, потенциальные ресурсы области оцениваются в 81 млн. т нефти и 116 млрд. м3 таза.
Более значительные перспективы связываются с погруженным рифовым массивом восточнее Балтимор-Каньона, а также с погруженным плато Блейк и банкой Джорджес.
Новошотландская нефтегазоносная область расположена в районе о-ва Сейбл. Здесь пробурено около 150 скважин и открыто несколько мелких залежей нефти и газа. Запасы газа наиболее крупного месторождения Тебо 13,5 млрд. м3, месторождение Венчур оценивается в 47,6 млрд. м3 газа и 2 млн. т конденсата.
Нефтегазоносная область Большой Ньюфаундлендской банки. Наиболее крупное месторождение нефти Хиберния открыто в 1977 г. Месторождение расположено в 310 км от берега, где глубина моря 80-90 м. Нефтяные залежи находятся в интервале глубин 2164-4465 м, в песчаниках мелового и позднеюрского возраста. Запасы месторождения оцениваются около 90 млн. т нефти. В пределах банки уже выявлено 15 газовых и нефтяных месторождений (Терра-Нова, Бен-Невис, Хеброн, Южный Темпест и др.), суммарные запасы которых оценивают в 177 млн. м3 нефти и 150 млрд. м3 газа. В 1979 г. в этом районе была пробурена скважина на глубину 6103 м при глубине воды 1480 м.
Геофизическими работами установлено продолжение продуктивной зоны и глубоководную часть Мексиканского залива (Миссисипский подводный каньон), где при глубине моря 375 м открыто нефтяное месторождение Коньяк.
Перспективной считается антиклинальная зона Пердидо, расположенная в глубоководной впадине Сигсби на континентальном склоне Техаса.
Высокие перспективы нефтегазоносности и у шельфов п-ов Юкатан и Флорида. Мощность осадков здесь 3-6 км. Однако пробуренные скважины пока не дали положительных результатов. Перспективна и глубоководная часть Мексиканского залива (впадина Сигсби).
Общие начальные потенциальные извлекаемые ресурсы Мексиканского залива оцениваются в 6,3 млрд. т нефти и 4,8 трлн. м3 газа. В пересчете на нефть это составит более 10 млрд. т углеводородов, в том числе 4,5 млрд. т в акватории США и 5,6 млрд. т в акватории Мексики.
Карибский нефтегазоносный бассейн. В пределах бассейна наибольшие концентрации углеводородов известны в заливе (лагуне) Маракайбо (Маракайбский нефтегазоносный суббассейн). Залив Маракайбо приурочен к одноименной межгорной впадине, окруженной горными хребтами Анд. Впадина имеет форму треугольника площадью 30 тыс. км2. Со стороны Карибского моря через узкий пролив морские воды вторгаются в пределы суши, образуя морскую лагуну-озеро с максимальной глубиной дна 250 м. Площадь ее 11,2 тыс. км2, что примерно составляет 1/3 площади всей впадины.
На месторождении Боливар Прибрежный установлено более 200 залежей нефти самого различного типа, из которых в конце 70-х годов ежегодно добывалось до 85 млн. т нефти. Основные залежи (миоцен-олигоцен), которые дают до 80% добычи, находятся в интервале глубин 170-3400 м. Известны крупные залежи в эоценовых породах на глубине свыше 4 км.

В пределах Антильской складчатой зоны выявлено несколько мелких нефтяных месторождении (о. Барбадос).
На атлантической окраине Карибского бассейна находится Тринидатский нефтегазоносный суббассейн, охватывающий залив Парна, о. Тринидад и его атлантический шельф. В пределах акватории уже открыто свыше 30 месторождений углеводородов с извлекаемыми запасами нефти 181 млн. т и газа 282 млрд. м3.
Адриатический нефтегазоносный бассейн. Первые газовые месторождения открыты в начале 60-х годов недалеко от г. Равенна (Равенна-Маре, Равенна-Маре-Зюд, Порто-Корсини-Маре и Чезатино-Маре). Запасы месторождений 20-30 млрд. м3. Позже выявлены мелкие нефтяные месторождения. Всего на адриатическом шельфе Италии открыто свыше 40 газовых месторождений с начальными доказанными запасами более 160 млрд. м3.
Всего в Средиземном море выявлено свыше 40 нефтяных и 60 газовых месторождений с разведанными извлекаемыми запасами 500 млн. т нефти и более 400 млрд. м3 газа. Общий начальный углеводородный потенциал Средиземного моря оценивается в 1,5 млрд. т нефти и 1 трлн. м3 газа, или около 2,5 млрд. т углеводородного сырья.






