в течении какого времени выполняется тест pwc170
Тесты врачебные
Проба Серкина
Результаты оцениваются по следующей таблице.
Категория испытуемых лиц | Фазы | ||
1 | 2 | 3 | |
Здоровые тренированные люди | 60 и более | 30 и более | более 60 |
Здоровые нетренированные люди | 40-55 | 15-25 | 35-55 |
Лица со скрытой недостаточностью кровообращения | 20-35 | 12 и менее | 24 и менее |
Ортостатическая проба
Теперь вычислим индекс Руфье по формуле:
Возрастание индекса J является также и признаком перетренированности, переутомления.
12-минутный тест Купера
Т ест выполняется на ровной, измеренной трассе (стадионе). Испытуемый или группа испытуемых преодолевают максимально возможную дистанцию за 12 минут. После 12-минутной работы определяется дистанция, которую они смогли преодолеть за это время. Результаты оцениваются по следующим таблицам:
Баллы | Длина преодоленной дистанции (км) и возраст (лет) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
20-29 | 30-39 | 40-49 | 50-59 | 60 и более | ||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | 2.6-2.8 | 2.5-2.7 | 2.45-2.6 | 2.3-2.5 | 2.1-2.4 | |||||||||||||||||||||||||||||||||||||||||||||||||||
4 | 2.4-2.6 | 2.3-2.5 | 2.2-2.45 | 2.1-2.3 | 1.9-2.1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 2.1-2.4 | 2.1-2.3 | 2.0-2.2 | 1.85-2.1 | 1.6-1.9 | |||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 1.95-2.1 | 1.9-2.1 | 1.8-2.0 | 1.65-1.85 | 1.4-1.6 | |||||||||||||||||||||||||||||||||||||||||||||||||||
1 |
Баллы | Длина преодоленной дистанции (км) и возраст (лет) | |||||||||||||||||||
20-29 | 30-39 | 40-49 | 50-59 | 60 и более | ||||||||||||||||
5 | 2.15-2.3 | 2.1-2.2 | 2.0-2.1 | 1.9-2.0 | 1.75-1.9 | |||||||||||||||
4 | 1.9-2.1 | 1.9-2.0 | 1.8-2.0 | 1.7-1.9 | 1.6-1.7 | |||||||||||||||
3 | 1.8-1.9 | 1.7-1.9 | 1.6-1.8 | 1.5-1.7 | 1.4-1.55 | |||||||||||||||
2 | 1.55-1.8 | 1.5-1.7 | 1.4-1.7 | 1.35-1.5 | 1.25-1.35 | |||||||||||||||
1 |
Возраст, лет | Величина ЧСС, уд/мин | |
Максимальная | Индикаторная | |
20-29 | 195 | 170 |
30-39 | 185 | 160 |
40-49 | 175 | 150 |
50-59 | 165 | 145 |
> 60 | 155 | 130 |
У испытуемого, в состоянии относительного покоя и в положении сидя, определяется для контроля исходная ЧСС, затем он в течение 5-ти минут выполняет первую нагрузку. В последние 30 секунд работы с помощью электрокардиографа, или за 10-15 секунд сразу после нагрузки, пальпаторно подсчитывается ЧСС1. После отдыха выполняется вторая, более высокая, нагрузка, и аналогичным путем подсчитывается ЧСС2. Величины ЧСС должны определяться как можно точнее.
Показатель работоспособности расчитывается по той же формуле (1):
PWC 170 = W1+(W2-W1) (170-ЧСС1) \ (ЧСС2-ЧСС1)
Мощность первой (W1) и второй (W2) нагрузки при восхождении на ступеньки определяется по формуле:
Полученные абсолютные значения физической работоспособности (в кгм/мин) не учитывают особенностей физического развития людей. Известно, что уровень физической работоспособности зависит не только от тренированности, но и от таких факторов, как пол, возраст, размеры тела, наследственность, состояние здоровья и т. д. Поэтому для того. чтобы можно было сравнивать уровень физической работоспособности у людей не только различного возраста и пола, но и с различной массой тела, расчитывают относительные величины PWC AF на 1 кг массы тела (в кгм/мин кг). Для этого полученное по формуле (1) абсолютное значение показателя физической работоспособности необходимо разделить на значение показателя веса тела (в кг).
Оценка физической работоспособности у людей различного возраста и пола (обобщенные данные)
Определение показателя максимального потребления кислорода (МПК) по результатам теста PWC 170
МПК = (1,7 Х PWC 170 + 1240) \ P,
Оценка физического состояния в зависимости от МПК у людей различного возраста и пола (обобщенные данные)
Понравилась статья? Поделитесь с друзьями!
Проба PWC170
Проба PWC170 [ править | править код ]
Физическая работоспособность в пробе PWC170 выражается в величинах той мощности физической нагрузки, при которой ЧСС достигает величины 170 уд/мин. Выбор именно этого значения ЧСС основан на следующих двух положениях.
Первое положение заключается в том, что зона адекватного функционирования кардиореспираторной системы с физиологической точки зрения ограничивается диапазоном изменения ЧСС от 100—110 до 170—180 уд/мин. Следовательно, с помощью этой пробы можно установить ту интенсивность физической нагрузки, которая «выводит» деятельность сердечно-сосудистой системы, а вместе с ней и всей кардиореспираторной системы, в область оптимального функционирования.
Второе положение базируется на том, что взаимосвязь между ЧСС и мощностью выполняемой физической нагрузки имеет линейный характер у большинства здоровых людей вплоть до ЧСС, равной 170 уд/мин. При более высокой ЧСС линейный характер зависимости между ЧСС и мощностью физической нагрузки нарушается.
В Каролинском университете, где проба PWC170 была впервые внедрена в практику, она проводилась следующим образом. Испытуемый выполнял на велоэргометре непрерывную работу с повышающейся через каждые 6 мин (ступенчато) мощностью вплоть до ЧСС, равной 170 уд/мин (величина ЧСС определялась на последней минуте каждой ступени). Частота вращения педалей поддерживалась постоянной, равной 60—70 оборотов в минуту. Однако такая процедура проведения пробы была весьма обременительной для испытуемого и занимала много времени. Все это не способствовало широкому распространению пробы.
В дальнейшем величину PWC170 стали определять более простым способом, используя для этого две или три нагрузки умеренной мощности. Величина PWC170 в этом случае находится путем графической экстраполяции. Для этого испытуемому предлагается выполнить две нагрузки разной мощности (W, и W2). На последней минуте этих нагрузок определяется ЧСС (соответственно f1 и f2). Далее в системе прямоугольных координат откладываются точки, соответствующие ЧСС при работе на указанных мощностях. Учитывая, что между ЧСС и мощностью физической нагрузки имеется линейная взаимосвязь, через эти точки проводится прямая линия до пересечения ее с линией, соответствующей ЧСС, равной 170 уд/мин. Из полученной таким образом точки опускается перпендикуляр на ось абсцисс. Координата пересечения этого перпендикуляра и оси абсцисс соответствует величине PWC170.
Графическое определение величины PWC170 имеет определенный недостаток — неизбежны погрешности, возникающие в процессе графических работ. В связи с этим было предложено простое математическое выражение, позволяющее определить величину PWC170, аналитически (без построения графиков):
где PWC170 — мощность физической нагрузки на велоэргометре, при которой достигается ЧСС, равная 170 уд/мин; W, и W2 — мощность первой и второй нагрузок, кгм/мин или Вт; f1 и f2 — ЧСС в конце первой и второй нагрузок.
Первая нагрузка обычно имеет небольшую мощность. Величину этой мощности подбирают индивидуально в зависимости от возраста и массы тела испытуемого по табл. 5.
После первой нагрузки испытуемый, сидя на велоэргометре, отдыхает в течение 3 мин, затем ему предлагается выполнить вторую, более интенсивную нагрузку. Выбор мощности второй нагрузки в значительной мере определяет точность экстраполяционного определения PWCI70. Очевидно, что чем ближе будет ЧСС во время второй нагрузки к величине 170 уд/мин, тем точнее будет определена величина PWC170. При этом оптимальную мощность для второй нагрузки можно подобрать на основании данных о ЧСС во время первой нагрузки по табл. Продолжительность первой и второй нагрузок равна 5 мин. Вся процедура исследования занимает около 13 мин.
Ориентировочные значения мощности первой нагрузки, рекомендуемые для определения PWC170 у здоровых нетренированных лиц [Карпман В. Л. и др., 1988]
Мощность первой нагрузки, Вт
Ориентировочные значения мощности второй нагрузки, рекомендуемые при определении PWC170 [Карпман В. Л. и др., 1988]
Мощность первой нагрузки, Вт
Мощность второй нагрузки, при ЧСС первой нагрузке, Вт
Для получения адекватных результатов необходимо строго придерживаться изложенной методики.
Как видно, нагрузка, используемая в пробе PWC170, задается в сравнимых, имеющих физическую размерность величинах. В этом отношении проба PWC170 выгодно отличается от гарвардского степ-теста. Второе важное достоинство теста PWC170 состоит в том, что задаваемые нагрузки далеки от предельных и поэтому их выполнение испытуемыми не представляет больших трудностей и не требует особой мотивации.
Определение физической работоспособности с помощью теста PWC170 позволяет получить обширную информацию, которая может быть использована как для характеристики резервов организма испытуемого, так и для динамического наблюдения за его физической подготовленностью. Учитывая, что при этом может изменяться масса тела испытуемых, а также для нивелирования индивидуальных различий в массе у разных людей, величины PWC170 рассчитываются на 1 кг массы тела. В этом случае размерность показателя — Вт/кг.
У здоровых молодых нетренированных мужчин величины PWC170 колеблются в пределах 115—180 Вт, а у женщин — 75— 125 Вт. Относительная величина PWC170 нетренированных лиц составляет в среднем 2,5 Вт/кг у мужчин и 1,7 Вт/кг у женщин. У спортсменов эти величины значительно выше и достигают у некоторых 300—400 Вт, а относительные величины — 5,0 Вт/кг.
Величина PWC170 может быть определена не только путем экстраполяции, но и прямым путем. В последнем случае имеется в виду определение той мощности физической нагрузки, при которой ЧСС реально достигает величины 170 уд/мин. Для этого испытуемый выполняет нагрузку на велоэргометре, а его ЧСС находится под контролем автокардиолидера или кардиомонитора. Путем произвольного повышения мощности можно увеличить ЧСС до любого заданного уровня, в рассматриваемом случае до 170 уд/мин. Многочисленными исследованиями доказано, что величины PWCl70, определенные прямым и экстраполяционным путями, практически одинаковы.
Для определения физической работоспособности у нетренированных взрослых людей может быть использован модифицированный вариант велоэргометрического теста PWC170 — проба PWCap (А — age, F— frequency).
Суть модификации состоит в том, что у лиц разного возраста в большом диапазоне непредельной мышечной работы наблюдается практически линейная зависимость между ЧСС и мощностью физической нагрузки. Это позволяет использовать известные положения, лежащие в основе теста PWC170, при определении физической работоспособности у всех людей (вне зависимости от возраста) с патологически ненарушенным автоматизмом клеток синусового узла. Однако индикаторный пульс при этом не должен оставаться постоянным, так как при любых сопоставимых нагрузках степень повышения ЧСС у здоровых нетренированных людей практически одинакова. Это нивелирует уровень физической работоспособности у лиц диаметрально разного возраста, оцениваемой по данным одного постоянного значения индикаторного пульса, будь то, например, 150 или 170 уд/мин.
В связи со структурной и функциональной возрастной инволюцией миокарда, изменением нейрогуморальной регуляции сердечной деятельности и другими причинами возможности повышения ЧСС становятся с возрастом все более ограниченными, поэтому на уровне предельных физических нагрузок в каждом последующем десятилетии жизни ЧСС повышается в меньшей степени, чем в предыдущем. Если для молодых людей ЧСС, равная 170 уд/мин, характеризует оптимальное функционирование сердечно-сосудистой системы, то у людей зрелого и пожилого возраста она может свидетельствовать уже о максимальной реакции на физическую нагрузку. У них адаптация и к субмаксимальным физическим нагрузкам, вызывающим подъем ЧСС до таких же, как у молодых людей, величин, сопровождается более напряженным режимом деятельности системы кровообращения. Об этом, в частности, можно судить по результатам измерения системного АД. Во время мышечной работы у лиц старшего возраста систолическое и диастолическое АД выше, чем у молодых, при одной и той же ЧСС. Поэтому, вероятно, будет выше и значение показателя, характеризующего сопротивление работе левого желудочка,— артериальный импеданс. Эти различия в сердечной деятельности касаются и ряда других физиологических показателей, характеризующих тяжесть физической нагрузки — например, способа энергетического обеспечения работающих мышц, соотношения между аэробными и анаэробными источниками удовлетворения кислородных запросов организма.
Все это говорит о том, что диапазон изменения ЧСС в зоне оптимального функционирования системы кровообращения (в частности, ЧСС, характеризующая начало этой зоны) индивидуален для каждой конкретной возрастной группы. Поэтому при определении физической работоспособности у лиц старших возрастных групп представляется оправданным ориентироваться на мощность физической нагрузки, при которой ЧСС равна не 170 уд/мин, как у молодых, а меньшей величине.
Значение ЧСС, равное 170 уд/мин, соответствует примерно 87 % от максимального ее значения у молодых людей. Есть предположение, что у лиц старшего возраста начало зоны оптимального функционирования системы кровообращения характеризует ЧСС, соответствующую примерно тому же проценту от максимальных для этого возраста величин. Значения ЧСС для лиц с десятилетним возрастным диапазоном могут быть установлены по табл. 7 либо (более точно) по формуле:
ЧССинд = (220 — возраст) • 0,87,
где ЧССинд — индикаторное значение ЧСС.
Такой подход имеет некоторые ограничения, связанные с тем, что данные, характерные для предельных режимов физической нагрузки, используются для нормирования ЧСС при непредельных нагрузках. Однако недостаточная точность в выборе индикаторной ЧСС, характеризующей начало зоны оптимального функционирования системы кровообращения, в таком случае компенсируется возможностью оценивать физическую работоспособность в возрастном аспекте, а также возможностью сопоставлять эти данные с результатами определения МПК, показателями производительности системы кровообращения, целым рядом других морфофункциональных характеристик сердца (максимальным ударным и минутным объемом крови во время физической нагрузки, объемом сердца, объемом полости левого желудочка, массой его миокарда и т. д.).
Методика проведения пробы PWCAF, последовательность действий, критерии прекращения нагрузки и противопоказания к ее использованию в основном аналогичны тем, которых придерживаются при определении величины PWC170.
Максимальная ЧСС и соответствующая ей индикаторная ЧСС, используемая при определении физической работоспособности [Карпман В. Л. и др., 1988]
Величина ЧСС, уд/мин
максимальная, рассчитанная по формуле: 220 — возраст
индикаторная, используемая в тестах PWC170 и PWCаf
Тестирование общей физической работоспособности
Содержание
Принципы тестирования общей физической работоспособности и энергетических потенций организма [ править | править код ]
Подходы к тестированию общей физической работоспособности [ править | править код ]
Согласно мнению многих авторов пробы с физической нагрузкой, используемые при измерении общей физической работоспособности, должны быть однотипными, стандартными и четко дозируемыми. При этом оценка степени реакции на любую нагрузку должна обязательно учитывать интенсивность и длительность последней.
При пробах с физической нагрузкой обычно используют бег, ходьбу, приседания, подъем и спуск со ступеньки определенной высоты (степ-тест ), велоэргометр и др. По мнению ряда исследователей, дозирование нагрузки определяется тремя факторами: длительностью, темпом и качеством ее выполнения. В связи с этим при использовании в качестве тестирующих упражнений ходьбы и приседаний мощность нагрузки дозируется недостаточно точно. Более точно дозирование нагрузок при подъеме и спуске со ступеньки определенной высоты (степ-эргометрия), и еще более надежным вариантом служит дозирование в условиях велоэргометрии. Однако когда речь идет о детях младше 10-12 лет, использование велоэргометрических тестов вряд ли можно считать достаточно обоснованным и физиологически корректным, если применяют стандартные велоэргометры, рассчитанные на взрослого человека.
Нагрузки, используемые в двигательном тестировании, должны отвечать следующим требованиям:
она должна давать возможность изменения интенсивности нагрузки (темп упражнения) в нужных пределах;
Наибольшее количество информации может быть получено в условиях нагрузок ступенчато повышающейся мощности. При этом если методы исследования позволяют регистрировать выбранные показатели непосредственно в процессе выполнения физической работы, рекомендуют использовать непрерывную нагрузку ступенчато повышающейся мощности. Если же это невозможно, принято применять ступенчато возрастающую нагрузку с интервалами отдыха, во время которых и регистрируют необходимые показатели.
По мнению ряда исследователей, наиболее целесообразно использовать следующие варианты физических нагрузок при определении физических кондиций:
При выборе мощности нагрузки одноступенчатой работы постоянной интенсивности могут быть использованы несколько подходов.
Одноступенчатые нагрузки рекомендуют при проведении массовых обследований.
При выполнении нагрузок повышающейся мощности с интервалами отдыха между отдельными ступенями мощность и длительность каждой из последовательных нагрузок, интервалы отдыха и общее количество ступеней определяют задачами исследования и особенностями физиологической реакции на нагрузку. При этом 1-ю нагрузку задают минимальной интенсивности.
При проведении пробы могут быть использованы ориентировочные схемы выбора нагрузок.
Рекомендуемая длительность нагрузки на каждой ступени не менее 3 мин. Этого времени достаточно для завершения переходного процесса, установления устойчивого состояния, когда деятельность кардиореспираторной системы стабилизируется на определенном уровне, отвечающем энергетическим запросам организма в новом режиме работы. Период отдыха между отдельными ступенями 3-5 мин.
При выполнении непрерывной работы повышающейся мощности без интервалов отдыха интенсивность и длительность отдельных ступеней также зависят от конкретных задач исследования. Непрерывная нагрузка оказывает большее физиологическое воздействие, чем дискретная, и поэтому позволяет в более короткий срок завершить процедуру исследования. Однако ее использование не всегда возможно, в связи с чем нагрузка повышающейся мощности с интервалами отдыха представляется более перспективной при изучении функционального состояния сердца у занимающихся массовой физической культурой.
В настоящее время у нас в стране при проведении массовых исследований для определения общей физической работоспособности используют [[Проба PWC170|пробу PWC170]] (физическая работоспособность при пульсе 170 ударов в минуту), в основе которой лежат два хорошо известных из физиологии мышечной деятельности факта:
Из этого следует, что ЧСС при мышечной работе может быть использована в качестве надежного критерия физической работоспособности человека. Выделяют два пути определения физической работоспособности по реакции пульса на физическую нагрузку:
Авторский вариант данной пробы предполагал определение ЧСС во время выполняемой на велоэргометре непрерывной работы с повышающейся через последовательные 6-минутные отрезки мощностью 300, 600, 900 и 1200 кгм/мин, на каждом уровне которой и на последней минуте регистрировали ЧСС. Испытание прекращали, когда она достигала 170 в минуту. Расчет величины PWC170 производился графически по точкам, соответствующим рабочим значениям ЧСС каждого уровня (ступеньки), откладываемым в системе прямоугольных координат.
Такая методика определения PWC170 требовала много времени, так как испытуемый выполнял физическую работу в течение 20-30 мин. Кроме того, неудобства этого метода усугублял графический способ расчета величины PWC170. В связи с этим была предложена специальная формула, позволяющая рассчитывать величину PWC170, не прибегая к графической экстраполяции:
WC170 = L + 60 * (170-f)/a
В 1969 г. в кардиологической лаборатории Государственного центрального ордена Ленина института физической культуры (ГЦОЛИФК) методика определения PWC170 была модифицирована с целью сделать процедуру тестирования более простой и доступной. По этой методике испытуемому предлагали последовательно выполнить на велоэргометре лишь две нагрузки умеренной интенсивности (например, 500 и 1000 кгм/мин с частотой вращения педалей 60-75 об./мин), разделенные 3-минутным интервалом отдыха. Каждая нагрузка продолжалась 5 мин, в конце ее в течение 30 с регистрировали ЧСС.
При этом наиболее рационально вести расчеты PWC170 не графическим способом, а путем подстановки экспериментальных значений ЧСС и мощности работы в предложенную формулу.
В конце 1970-х гг. было предложено определять показатель PWC170 в тесте с однократной физической нагрузкой.
Для получения объективной величины работоспособности в данном варианте пробы необходима интенсивность работы, которая увеличивала бы ЧСС до 145- 150 в минуту, а значения пульса покоя приближались бы к базальным.
В системе общеевропейских тестов целью проведения пробы PWC170 является определение аэробного компонента физической работоспособности человека. Для этого используют тест ступенчато возрастающей мощности, который выполняется без интервалов отдыха в течение 9 мин. За это время нагрузка возрастает вдвое (спустя 3 и 6 мин). ЧСС измеряют в течение последних 15 с каждой 3-минутной ступени, нагрузка которой регулируется так, чтобы ЧСС к концу теста увеличивалась до 170 в минуту. Мощность нагрузки рассчитывается на единицу массы тела испытуемого (Вт/кг).
Согласно результатам многочисленных исследований определение показателя PWC170 может равнозначно определяться в лабораторных (велоэргометрический тест, степ-тест, тест на тредмиле) и полевых условиях (беговые тесты, пробы с плаванием, бегом на лыжах или коньках, передвижением на велосипеде, с греблей, штангой).
Однако в последнее время появились данные, свидетельствующие о том, что результаты, получаемые в условиях велоэргометрического и степ-теста, далеко не равнозначны.
Во многих руководствах в качестве метода определения общей физической работоспособности, в основном начиная с 15 лет, предлагают использовать Гарвардский степ-тест, который был разработан в Гарвардской лаборатории по изучению утомления.
Методики тестирования общей физической работоспособности [ править | править код ]
В настоящее время для определения общей физической работоспособности наиболее широко используют три пробы:
У детей и подростков в качестве информативных критериев общей физической работоспособности также могут быть использованы непрерывный 5-минутный бег и показатель «пульс-скорость».
Проба PWC170 [ править | править код ]
Существуют три лабораторных варианта проведения пробы PWC:
Общеевропейский вариант [ править | править код ]
Предполагает выполнение трех возрастающих по мощности нагрузок (продолжительность каждой 3 мин), не разделенных интервалами отдыха. За это время нагрузка возрастает дважды (спустя 3 и 6 мин от начала тестирования).
ЧСС измеряют в течение последних 15 с каждой 3-минутной ступени, нагрузку которой регулируют так, чтобы к концу теста ЧСС увеличивалась до 170 в минуту.
Мощность нагрузки рассчитывают на единицу массы тела испытуемого (Вт/кг). Первоначальную мощность устанавливают из расчета 0,75-1,25 Вт/кг, а ее увеличение осуществляют в соответствии с возрастанием ЧСС.
Расчет показателя PWC170 производят графически или по формуле:
Модификация В.Л. Карпмана [ править | править код ]
Предполагает выполнение двух нагрузок возрастающей мощности (продолжительность каждой 5 мин) с интервалом отдыха 3 мин.
Определение физической работоспособности путем расчета величин PWC170 (V) по методике В.Л. Карпмана дает надежные результаты при выполнении следующих условий:
При выборе мощности 1-й нагрузки в данной модификации пробы PWC170 следует учитывать массу тела и предполагаемый уровень общей физической работоспособности обследуемого (табл. 1 и 9-2).
Таблица 1. Мощность 1-й нагрузки (W1, кгм/мин), рекомендуемая для определения PWC170 у спортсменов различной специализации и массы тела
Группа видов спорта
Скоростно-силовые и сложнокоординационные
Игровые и единоборства
Таблица 2. Мощность 2-й нагрузки (W2, кгм/мин), рекомендуемая для определения PWC170
Мощность 1-1 нагрузки (W2), кгм/мин
Мощность 2-й нагрузки (W2). кгм/мин
ЧСС при W1 в минуту
В конце каждой нагрузки (последние 30 с работы на определенном уровне мощности) у обследуемого регистрируют (пальпаторно, аускультативно или электрокардиографически) ЧСС.
Расчет показателя PWC170 производят графически или по формуле:
Модификация Л.И. Абросимовой и И.А. Корниенко [ править | править код ]
Предполагает выполнение однократной нагрузки, обусловливающей возрастание ЧСС до 150-160 в минуту. Для расчета PWC170 рекомендована следующая упрощенная формула:
Отличает варианты проведения данного теста лишь время выполнения работы и частота шаговых циклов в минуту. Так, Л.И. Абросимова рекомендует 3-минутную нагрузку с частотой восхождений 30 в минуту, а И.А. Корниенко применительно к детям старше 6,5 года использует 5-минутную нагрузку.
Расчет мощности нагрузок при определении показателя PWC170 в степэргометрическом тесте производят по формуле:
У детей и подростков для определения общей физической работоспособности наиболее широко используют пробу PWC170 с однократной физической нагрузкой (модификация Л.И. Абросимовой).
Оценку полученных данных проводят на основании относительных величин показателя PWC170, которые рассчитывают как частное от деления абсолютных значений (кгм/мин или Вт/мин ) на килограмм массы тела (кгм/мин на килограмм или Вт/мин на килограмм).
Методики проведения пробы PWC170 со специфическими нагрузками (по В.Л. Карпману с модификацией согласно общеевропейскому варианту)
При проведении пробы с циклическими нагрузками регистрируют два показателя: скорость движений и ЧСС.
Скорость движения рассчитывают по формуле:
ЧСС определяют пальпаторно, аускультативно или инструментальным методом в течение первых 5 с восстановительного периода или по времени первых после окончания нагрузки 10 или 15 сердцебиений.
Расчет скорости движений циклического характера при ЧСС 170 в минуту производят по идентичной формуле:
Чем больше PWC170 (V), тем выше физическая работоспособность.
Для получения сопоставимых результатов при динамических наблюдениях пробу со специфическими нагрузками необходимо проводить по возможности в аналогичных внешних условиях и с использованием одного и того же спортивного инвентаря.
Проба с бегом [ править | править код ]
Этот вариант теста PWC170 основан на использовании в качестве физической нагрузки легкоатлетического бега.
Методика проведения пробы следующая.
Проба с плаванием вольным стилем [ править | править код ]
Для суждения о специальной подготовленности пловцов в избранном виде плавания необходимо использовать пробу, выполняемую тем стилем, который является ведущим в подготовке спортсмена.
Методика проведения пробы следующая.
Проба с бегом на лыжах [ править | править код ]
Методика проведения пробы следующая.
Проба с бегом на коньках для фигуристов [ править | править код ]
Методика проведения пробы следующая.
Аналогичный тест может быть использован при определении физической работоспособности у спортсменов, занимающихся хоккеем с шайбой, хоккеем с мячом, конькобежным спортом.
Проба с передвижением на велосипеде [ править | править код ]
Этот тест проводят в естественных условиях тренировки велосипедистов на велотреке или шоссе.
Методика проведения пробы следующая.
Проба с греблей [ править | править код ]
Методика проведения пробы следующая.
Физическая работоспособность спортсменов и спортсменок различных специализаций по результатам теста PWC170 (V) приведена в табл. 3.
Таблица 3. Физическая работоспособность у спортсменов различных специализаций
Легкая атлетика (бег на средние дистанции)
Фигурное катание на коньках
Легкая атлетика (бег на короткие дистанции)
Легкая атлетика (бег на средние дистанции)
Легкая атлетика (бer на короткие дистанции, прыжки в высоту)
Гарвардский степ-тест [ править | править код ]
Обследуемому предлагают выполнить мышечную работу в виде восхождений на ступеньку с частотой 30 раз в минуту. Продолжительность нагрузки и высота ступеньки зависят от пола, возраста и антропометрических данных (табл. 4).
Таблица 4. Высота ступеньки и время восхождений при проведении Гарвардского степ-теста
Площадь поверхности тела м2
Высота ступеньки, см
Время восхождений, мин
Испытуемому предлагают выполнить на велоэргометре работу, исходная мощность которой составляет 1 Вт/кг. Через каждые 2 мин педалирования мощность нагрузки увеличивают на 1 Вт/кг до тех пор, пока испытуемый не откажется от выполнения работы.
При тестировании должны соблюдаться все меры предосторожности, как и при любой пробе с предельными нагрузками.
Если испытуемый прекратил педалирование на 10-й минуте, т.е. на 2-й минуте 5-й ступени мощности, соответствующей 5 Вт/кг, то, сопоставив эти данные с табличными, можно заключить, что у обследуемого спортсмена общая физическая работоспособность соответствует высокому уровню.
Для более точной оценки функциональной готовности спортсмена необходима регистрация продолжительности работы до отказа в секундах.
Функциональное тестирование энергетических потенций организма [ править | править код ]
В целях тестирования энергетических потенций организма спортсменов используют шесть видов испытаний: ступенчато возрастающей нагрузки, на удержание критической мощности, однократной предельной работы, повторной предельной работы, максимальной анаэробной мощности и повторной нагрузки максимальной мощности.
Проба со ступенчато возрастающей нагрузкой [ править | править код ]
При проведении тестирования в беге на тредбане график увеличения скорости бега обычно начинается с 2,5 м/с с приростом скорости в каждые последующие 2 мин на 0,5 м/с, т.е. 2,5; 3,0; 3,5; 4,0 м/с и т.д. Подобная регламентация нагрузки должна обеспечить прохождение пяти-, шестикратного повышения интенсивности упражнения, вплоть до полного изнеможения испытуемого.
Забор проб выдыхаемого воздуха производят в течение последних 30 с работы при каждом значении мощности. В момент, когда исследуемый не может поддержать заданную частоту педалирования, осуществляется последний забор воздуха. Обследование прекращается, если в течение 5-6 с регистрируется снижение частоты педалирования.
Забор проб крови для определения концентрации лактата производят в последние 30 с работы при каждом значении мощности и далее по следующей программе:
Выбор этого интервала восстановительного периода обусловлен временем появления отставленного максимума лактата в крови
ЧСС регистрируют дважды (с 15-й по 20-ю и с 45-й по 50-ю секунду) в течение каждой минуты работы.
Тест Конкони [ править | править код ]
В основе теста Конкони лежат результаты исследовательских работ, показавших закономерность изменения концентрации лактата в крови и ЧСС при ступенчатом увеличении интенсивности физической нагрузки. Значение ЧСС, при которой исчезает прямолинейная зависимость между приростом сердечного ритма и интенсивностью физической нагрузки, называется точкой отклонения, и она соответствует анаэробному порогу (концентрация лактата 4 ммоль/л) отклонения (рис. 1).
Чем большему значению ЧСС соответствует точка отклонения, тем выше уровень анаэробного порога спортсмена. У хорошо тренированных спортсменов значение точки отклонения может быть на 5-20 ниже максимального значения ЧСС. нетренированного человека значение точки отклонения ниже максимальной величины ЧСС на 20-30. Чем лучше тренированность спортсмена, тем выше значение точки отклонения и анаэробного порога. На представленном ниже графике показана динамика изменений точки отклонения у одного и того же спортсмена в разные этапы спортивной подготовки.
Задача спортсмена заключается в постепенном увеличении скорости бега через каждые 200 м. Каждые последующие 200 м он должен пробегать на 1-2 с быстрее предыдущих. Как правило, длина дистанции составляет 3400-3600 м (17-18 отрезков по 200 метров каждый). После окончания теста его результаты анализируются с помощью несложной математической обработки. Программное обеспечение Polar позволяет на основе данных, перенесенных из монитора сердечного ритма в персональный компьютер, автоматически определить значение ЧСС, которой соответствует точка отклонения и соответственно анаэробный порог. Преимуществом метода Конкони служит то, что он легко воспроизводим и дает возможность регулярного определения уровня анаэробного порога и тренированности спортсмена. Для получения объективной информации необходимо строго придерживаться методики осуществления теста Конкони.
Проба на удержание критической мощности [ править | править код ]
Данная проба также ориентирована на комплексную оценку аэробных и анаэробных потенций организма. При проведении теста используют результаты определения критической мощности (скорости) в тесте ступенчато возрастающей нагрузки. Регламентом тестирования предусматривается выполнение до отказа упражнения на критической скорости после стандартной 10-минутной разминки и 4-минутного интервала отдыха.
Забор проб выдыхаемого воздуха осуществляют на каждой минуте по последним 30-секундным интервалам на протяжении всего периода выполнения упражнения. Момент прекращения обследования устанавливают способом, идентичным описанному выше.
Забор проб крови для определения концентрации лактата производят на 1-3-й минуте восстановления.
ЧСС регистрируют дважды (с 15-й по 20-ю и с 45-й по 50-ю секунду) в течение каждой минуты работы.
Тест однократной предельной работы [ править | править код ]
Данный вид лабораторных испытаний предназначается для избирательной оценки анаэробной гликолитической мощности. Подбор параметров тестирующего упражнения здесь должен обеспечить максимальную интенсификацию анаэробных превращений в работающих мышцах, предельно высокую скорость образования кислородного долга и накопления молочной кислоты в крови. Этой задаче в наибольшей степени соответствует выполнение на велоэргометре в течение 1 мин предельной работы на уровне около 5 кп (сопротивление на колесе 5 кг, максимальная частота педалирования) или так называемый Вингейт-тест, заключающийся в исполнении упражнения предельной интенсивности в течение 30 с (тесты выполняют после 10-минутной разминки с 5-, 10-секундными ускорениями и 4-минутного интервала отдыха). Результаты этих тестов идентичны и могут быть использованы в качестве валидной оценки анаэробных возможностей спортсмена.
Тест повторной предельной работы [ править | править код ]
Данный тест дает возможность избирательно оценивать анаэробную гликолитическую емкость. В отличие от испытания в однократном предельном усилии, при котором достигается наибольшая скорость накопления лактата, повторное (с интервалом в 1 мин) выполнение предельного упражнения позволяет прийти к наивысшим значениям концентрации лактата в крови и тканях, самым значительным сдвигам кислотно-основного равновесия и образованию максимального кислородного долга. Программа стандартизированных лабораторных испытаний предусматривает 3- или 4-кратное повторение минутных сеансов работы на велоэргометре, вызывающих полное изнеможение испытуемого (тест выполняют после 10-минутной разминки с 5-, 10-секундными ускорениями и 4-минутного интервала отдыха).
Забор проб выдыхаемого воздуха производят на каждой минуте и в последние 30 с работы.
Забор проб крови для определения концентрации лактата производится на 1-3-й минуте восстановления.
ЧСС регистрируется дважды (с 15-й по 20-ю и с 45-й по 50-ю секунду) в течение каждой минуты работы.
Тест максимальной анаэробной мощности [ править | править код ]
Тест повторной нагрузки максимальной мощности [ править | править код ]
Данный тест ориентирован на избирательную оценку алактатной анаэробной емкости. Программа тестирования предусматривает повторение до отказа кратковременных упражнений максимальной мощности через постоянные интервалы отдыха, недостаточные для восстановления алактатных анаэробных резервов в работающих мышцах. В работе на велоэргометре этому режиму соответствует повторное выполнение 10-секундных упражнений максимальной мощности и через 30-секундные интервалы отдыха. В качестве количественной оценки алактатной анаэробной емкости обычно используют показатели общего числа повторений упражнения на максимальной мощности или общего количества работы, выполненной до момента снижения максимальной мощности.
«Полевые» эквиваленты тестирования энергетических потенций организма спортсменов [ править | править код ]
У перечисленных выше стандартизированных лабораторных тестов существуют свои аналоги в форме специальных контрольных упражнений, которые широко применяют в практике отдельных видов спорта. Тесту ступенчато возрастающей нагрузки по своей направленности соответствуют применяемые в практике легкоатлетического спорта испытания в повторном беге на дистанции 1000 м с постепенно возрастающей скоростью. Тесту на удержание критической мощности соответствуют испытания в контрольном беге на 2000 м и тест Купера (дистанция, пробегаемая за 12 мин). Тесту однократной предельной нагрузки соответствуют испытания в контрольном беге на дистанции 300 или 400 м, плавании на 50 и 100 м, «челночном» беге на площадке в баскетболе, повторном беге 6×54 м, в хоккее и т.п.
Наиболее распространенные пробы с физической нагрузкой с применением тредмила для определения в лабораторных условиях толерантности к физической нагрузке и энергетических потенций организма приведены в гл. 7 (в разделе «Функциональные пробы сердечно-сосудистой системы).
Принципы оценки работы, выполненной в нагрузочных тестах [ править | править код ]
Показатели выполненной работы при нагрузочных тестах могут быть выражены в различных единицах измерения (Вт, кгм/мин и др.). В последнее время в зарубежной литературе оценку нагрузок в физических тестах вместо килограммометров в минуту (кгм/мин) производят в килопондометрах в минуту (кпм/мин). Под килопондометром подразумевается сила, действующая на массу в 1 кг при нормальном ускорении силы тяжести. В обычных условиях 1 кгм соответствует 1 кпм.
Уравнения для перевода одних единиц интенсивности нагрузок в другие
Уравнения для перевода единиц выполненной работы и потребления кислорода в единицы энергетических затрат организма
При проведении теста на тредмиле возможность получения прямых цифровых показателей в принятых единицах мощности отсутствует, но при стандартизации метода результаты пробы легко оценить, зная продолжительность нагрузки, скорость движения дорожки и угол ее наклона (табл. 5).
Таблица 5. Программа физической нагрузки при проведении теста на тредмиле
Скорость движения дорожки. км/ч
Эргометрические, газометрические и биохимические критерии энергетических способностей спортсменов приведены в табл. 6.
Таблица 6. Энергетические критерии физической работоспособности спортсменов
Максимальная анаэробная мощность, скорость распада макроэргов (P/t)
Скорость накопления молочной кислоты (Hla/t). скорость избыточного выделения СO2 (ЕхсСO2)
Максимальное потребление кислорода (VO2max). критическая мощность (WC). O2-приход за время выполнения упражнения
Общее содержание КФ в мышцах, величина алактатного O2-долга
Максимальное накопление молочной кислоты в крови (НIа) максимальный O2-долг, максимальный сдвиг pH ( Δ pH max)
Скорость оплаты алактатного O2-долга (К)
Механический эквивалент молочной кислоты (W/HIa)
Кислородный эквивалент работы, порог анаэробного обмена (ПАНО)
Сравнительные данные, касающиеся максимального потребления кислорода у лиц различного пола, занимающихся и не занимающихся спортом, приведены в табл. 7.
Таблица 7. Максимальное потребление кислорода у спортсменов и неспортсменов
Группа или вид спорта
Мужчины. Максимальное потребление 0;, мл/кг в минуту
Женщины. Максимальное потребление O2 мл/кг в минуту
Прыжки с трамплина
Скоростной бег на конькас
Надежность и информативность показателей аэробной и анаэробной работоспособности спортсменов.
Степень воспроизводимости, т.е. надежность биоэнергетических критериев физической работоспособности, широко используемых в системе тестирования спортсменов различна, а их взаимосвязи далеко не однозначны.
В качестве основных лабораторных контрольных испытаний применяют:
дозированную 30-минутную работу на уровне ПАНО (работа аэробной направленности);
В отношении надежности регистрируемого в настоящих исследованиях комплекса критериев проведенные наблюдения показали, что наиболее надежными при оценке текущей индивидуальной динамики функциональных возможностей организма служат в первую очередь эргометрические величины, т.е. реальное количество произведенной механической работы в тестах, выполняемых до отказа.
При дозированных нагрузках пороговой и субкритической мощности высоконадежен только коэффициент использования кислорода (высокую надежность данный показатель обнаруживает и в тесте «30 мин работы на уровне ПАНО»).
В диапазоне критической мощности высоконадежны значения ЧСС и коэффициент использования кислорода.
Результаты данной серии исследований показали отсутствие значимых различий в величине максимального потребления кислорода, достигаемой в тестах «ступенчато возрастающая нагрузка» и «повторная предельная нагрузка 3 раза по минуте через минуту отдыха». Исходя из этого, при обследовании квалифицированных спортсменов последнее испытание следует считать более информативным, так как оно дает возможность одновременно оценивать уровень и аэробной мощности (максимальное потребление кислорода), и анаэробных гликолитических возможностей организма.
В отношении показателя порога анаэробного обмена результаты проведенных исследований показали, что его расчет на основании неметаболического излишка CO2 не может считаться высоконадежным, однако при выражении ПАНО в единицах мощности, а не в процентах максимального потребления кислорода, как это было принято ранее, данный показатель может быть использован в целях определения аэробных возможностей организма.
Согласно полученным данным содержание молочной кислоты в крови на последовательных уровнях мощности, вплоть до критической, при выполнении теста «ступенчато возрастающая нагрузка» проявляет тесную взаимосвязь с ее исходным уровнем. В связи с этим использование данного показателя в качестве основного критерия энергетической направленности нагрузок, а также при определении порога анаэробного обмена обоснованно только при его нормальных исходных величинах.
На основании проведенных исследований установлено также, что показатель ЧСС при выполнении длительных нагрузок пороговой мощности не может служить энергетическим критерием нагрузки, поскольку с увеличением продолжительности упражнения он прогрессивно возрастает на фоне стабильных значений легочной вентиляции, потребления кислорода и неметаболического излишка CO2.
Полученные данные показали также, что физиологические показатели могут служить информативными критериями физической работоспособности только при сравнении значимо отличающихся по уровню квалификации групп спортсменов, в частности кандидатов в мастера спорта с атлетами III и II спортивных разрядов. При этом, кроме реального количества выполненной работы, достаточно валидными показателями служат:
Из расчетных показателей информативны абсолютные значения PWC150, а также абсолютные и относительные значения PWC170.
При обследовании близких по уровню квалификации групп спортсменов, в частности кандидатов в мастера спорта и атлетов I спортивного разряда, эргометрические, газометрические и пульсовые показатели не могут использоваться в качестве валидных критериев функциональных возможностей организма.
Многолетняя динамика эргометрических, газометрических и пульсовых показателей, регистрируемых в тесте ступенчато возрастающей нагрузки у спортсменов высокого класса (начиная с I спортивного разряда), не отражает динамики спортивного роста.
Фактические значения и степень диагностической значимости показателей максимального потребления кислорода, порога анаэробного обмена, уровня накопления молочной кислоты в крови, ЧСС (как критерия энергетического характера работы) зависят соответственно от числа повторений тестирующей процедуры, метода расчета, исходных значений и продолжительности контрольного исследования.
Эргометрические, газометрические, пульсовые и биохимические критерии физической работоспособности, широко используемые в системе тестирования спортсменов, значимо отличаются степенью своей надежности, информативности и прогностической значимости. В связи с этим при оценке отдельных компонентов физической работоспособности выбор контрольных тестов и регистрируемых в них физиологических показателей должен осуществляться с учетом целей и задач исследований, контингента обследуемых и специализирующей дистанции.
Таким образом, в исследованиях, связанных с изучением индивидуальной текущей динамики функционального состояния организма спортсменов, специализирующихся в циклических видах спорта, направленных на развитие выносливости, свидетельством его достоверного улучшения могут служить:
Оценивая энергетические возможности организма спортсменов различного ранга, необходимо иметь в виду, что при достижении определенного уровня квалификации, в частности соответствующего I спортивному разряду, эргометрические, газометрические и пульсовые показатели, регистрируемые в апробированных в настоящих исследованиях тестах, в целом стабилизируются, переставая отражать дальнейший рост спортивных достижений. Учитывая это, их регистрация у атлетов высокого класса необходима только для подтверждения ранее полученных значений, которые при ухудшении функционального состояния организма могут снижаться.
При обследовании значимо отличающихся групп спортсменов, кроме эргометрических, наибольшей диагностической ценностью из комплекса физиологических критериев работоспособности обладают ЧСС на всех, начиная с пороговой, уровнях мощности, показатель физической работоспособности при пульсе 170 в минуту, а также абсолютные и относительные значения максимального потребления кислорода.
В целях получения истинных значений максимального потребления кислорода в тестах «ступенчато возрастающая нагрузка» и «удержание критической мощности» необходимо проведение многократных измерений данного показателя.
При расчете показателя порога анаэробного обмена целесообразно его выражение в единицах мощности, а не в процентах максимального потребления кислорода.
Определение энергетической направленности нагрузок на основании уровня накопления молочной кислоты в крови возможно только при ее нормальных исходных значениях.
В продолжительных нагрузках пороговой мощности ЧСС в отличие от газометрических показателей не может служить критерием энергетического характера работы.
- в течении какого времени выполняется просьба пассажира о предоставлении услуг чайной торговли сдо
- в течении какого времени вырабатываются антитела к коронавирусу после прививки