заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза

PsyAndNeuro.ru

Структурное и функциональное развитие мозга

заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть картинку заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Картинка про заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза

Период от рождения и до 2 лет является очень важным возрастом, во время которого устанавливаются поведенческие паттерны и когнитивные возможности ребёнка. В это время увеличиваются в размерах корковые нейроны, с большой скоростью растёт число синапсов, во много раз возрастает количество олигодендроглиоцитов. Вместе с этим, в это же время возможно проявление «индикаторов» риска для развития таких психических расстройств, как аутизм и шизофрения. Не смотря на всё важность данного периода в онтогенезе, мы мало, что знаем о нём.

В марте 2018 года в журнале Nature была опубликована статья американских исследователей John H. Gilmore, Rebecca C. Knickmeyer, Wei Gao о развитии головного мозга у детей в период с рождения и до 2 лет, в которой они при помощи анализа описательных исследований проследили его структурные и функциональные изменения, их роль в развитии психических расстройств, а также попытались установить возможные признаки будущих отклонений в нервно-психической сфере.

Структурное развитие головного мозга

Все наши знания о строении головного мозга базируются на множестве посмертных исследований, которые в большинстве случаев ограничены поперечным дизайном. Согласно данным работам, объём головного мозга ребёнка в возрасте 2 – 3 недель составляет около 35% от объёма головного мозга взрослого. К концу второго года жизни данная цифра увеличивается до 80%. После этого рост головного мозга становится более равномерным.

заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть картинку заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Картинка про заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза

Нейроонтогенез человека на клеточном уровне

Сразу же после рождения значительно увеличиваются объёмы серого и белого веществ. Но, в отличие от белого, которое растёт постепенно и практически до 30 лет, серое вещество увеличивается быстрее и замедляет свой рост уже к подростковому возрасту.

Корковый слой достигает пика своего роста к 1 – 2 годам, а затем его рост прекращается. Особенно быстро растут извилина Гешля, Роландова борозда, передняя центральная извилина. Площадь поверхности мозга расширяется вплоть до 8 – 12 лет. Её рост также гетерогенен по областям: кора латеральной лобной, латеральной теменной и затылочной долей мозга развиваются быстрее, чем орбитальная часть лобной доли и центральная доля. В целом рисунок извилин головного мозга, примерно, одинаков как у новорожденных, так и у взрослых.

заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть картинку заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Картинка про заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза

Структурное развитие мозга в раннем детстве: созревание миелина

Мозолистое тело, нижний и верхний продольные пучки есть у детей уже при рождении. Это говорит о том, что большая часть «проводящего» мозга формируется ещё в пренатальный период.

С рождения начинается миелинизация нервных волокон, распространяясь с мозжечка, моста и внутренней капсулы и продолжаясь от валика мозолистого тела, зрительных путей до затылочных, теменных долей и передней части лобной и височной долей.

заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть картинку заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Картинка про заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза

Оценочные траектории структурных параметров головного мозга в течение развитии. FA – фракционная анизотропия

Нервные сети

Не меньший интерес представляет развитие нервных сетей, так как их структурные и функциональные нарушения ведут к различным нервно-психическим заболеваниям. Согласно множеству исследований, нервные центры появляются ещё до рождения. Это показано путём проведения МРТ недоношенным детям в сравнении с обследованиями здоровых детей. Первыми появляются сенсомоторные, зрительные и слуховые центры. Они располагаются в тех же зонах мозга, что и у взрослых.

Языковой центр у взрослых располагается более латерально и окружён нижней лобной и верхней височной извилинами. Иерархия областей головного мозга также закладывается с рождения.

Влияние пола, наследственности и социальной среды

В настоящее время имеются исследования, указывающие на то, что разница в структуре и функциональной активности головного мозга, зависящая от пола, имеется с рождения. Например, при рождении мозг мужчин на 6% больше, чем у женщин. Медиальная часть височной доли коры головного мозга и Роландова борозда также больше у мужчин, в то время как у женщин преобладают моторные и зрительный центры. Мозг мужчин увеличивается более быстро, чем у женщин. После двухлетнего возраста процесс гирификации более выражен у мужчин (но не в период от 0 до года). Нервные волокна некоторых мозговых структур быстрее подвергаются миелинизации у женщин, чем у мужчин (например, мозолистое тело). В раннем возрасте нервные сети примерно одинаковы у обоих полов. Но затем в процессе развития связи между амигдалой и средней височной извилиной, постцентральной извилиной и гиппокампом сильнее у женщин. У мужчин в свою очередь преобладают связи между амигдалой и зонами, ответственными за страх. Все эти различия способствуют последующей дифференциации в выработке гормонов, в поведенческих паттернах.

Изучая головной мозг со стороны его структурных особенностей в зависимости от пола, мы можем приблизится к пониманию половых особенностей психических расстройтв. Как и пол, наследственность также играет роль в общем объёме мозговой ткани, развитии корковых структур, распределении серого и белого веществ. Некоторые исследования отмечают генетические влияния на структуру и функциональные особенности головного мозга. Особенно обращают на себя внимания гены, контролирующие процесс транскрипции, регуляторы хроматина, РНК-связывающий белок.

Есть исследования, доказывающие, что социо-экономические факторы играют не последнюю роль в структурном развитии головного мозга. Мозг детей, чьи семьи имеют небольшой доход, подвергающихся родительской депривации, имеет меньший объём серого вещества в коре, гиппокампе, амигдале. При этом различий в белом веществе не обнаруживается. С возрастом влияние социо-экономических факторов становится ещё заметнее.

Также обнаружено влияние стресса, депрессии и тревоги матери во время беременности на последующее развитие мозга её ребёнка. В частности, повышенный уровень кортизола у матери коррелирует с большим размером амигдалы у семилетних девочек.

Депрессия матери, вероятно, приводит к уменьшению коркового слоя у ребёнка. У детей, чьи матери испытывали тревогу во время беременности, в период с рождения до полугода рост гиппокампа происходит медленнее. Существуют исследования, подтверждающие влияние алкоголя и наркотических веществ на развитие головного мозга. Так, приём кокаина во время беременности ведёт к нарушению связи между амигдалой и срединной префронтальной корой, между таламусом и фронтальной корой.

Предикторы риска нервно-психических заболеваний

Некоторые исследования ещё в раннем детстве обнаруживают нарушения развития головного мозга, являющиеся предикторами развития нервно-психических заболеваний,. Например, изменения в объёме серого и белого веществ ведёт к отставанию в росте всех структур головного мозга.

В настоящее время есть исследования, демонстрирующие, что у новорождённых мальчиков, имеющих родственников, страдающих шизофренией, головной мозг содержит больше серого вещества по сравнению с контрольной группой. У детей с риском развития аутизма до шести месяцев проявление фракционной анизотропии на МРТ выше, чем в норме; после 6 месяцев данный показатель снижается, и к году достигает меньшего уровня, чем в популяции.

Сильная связь между амигдалой, передней инсулой и вентральным стриатумом, возможно, является предиктором развития тревожных расстройств. Существует исследование, показавшее небольшое, но тем не менее статистически значимую зависимость между миелинизацией нервных волокон в лобной и височной долях и речевым развитием в возрасте от 3 месяцев до 4 лет, а также между общей миелинизацией головного мозга и уровнем когнитивного развития в этот же возрастной период.

Тенденции

Описательные исследования показали нам, что головной мозг с момента рождения до года претерпевает множество изменений: быстрый рост серого вещества, миелинизация, развитие мозговых структур, гирификация. После двух лет процесс развития замедляется.

Благодаря описательным исследованиям нам удалось проследить влияние наследственности, генных факторов, социальной среды, индивидуальных особенностей на развитие мозга, удалось обнаружить предикторы риска нервно-психических расстройств. Возможно, подобные исследования дадут нам в будущем возможность обнаруживать биомаркёры этих заболеваний задолго до того, как они проявятся клинически. Это даст нам возможность более мягко вмешаться в развитие головного мозга, что в последующем приведёт к более благоприятным исходам нервно-психических заболеваний.

Источник

Заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза

Рассмотрим вкратце эмбриогенез ЦНС. Более полная информация содержится в классических работах (Sarnat, 1987, Barkovich et al., 1992, McConnell, 1992). В таблице ниже представлен схематический обзор основных стадий эмбриогенеза ЦНС. Регуляция развития ЦНС, фантастически сложного процесса, контролируется многими факторами, особенно генетическими. Главную роль играет большой набор белков, кодируемых или регулируемых генами (гомеобокс-гены и факторы транскрипции), которые определяют градиент дифференцировки (переднее-задний и дорсовентральный) и ограничивают определенность основных организационных единиц. Эти механизмы до сих пор в значительной степени неясны, и их изучение выходит за рамки данной книги.

На протяжении второй недели эмбриогенеза формируются три слоя из эктодермы, мезодермы и энтодермы. Через две недели срединная часть эктодермы, под влиянием подлежащей мезодермы, становится нервной пластинкой, которая в дальнейшем развивается в нервный желобок, а затем в нервную трубку. На четвертой неделе нервная трубка закрывается. Процесс замыкания начинается в средней части трубки и направляется к конечностям. Молекулы адгезии нервных клеток играют центральную роль в процессе закрытия (Sarnat и Flores-Sarnat, 2002, 2004).

Замыкание нервной трубки определяется дорсальной индукцией со стороны мезодермы. До закрытия трубки на девятый день на переднем конце эмбриона становятся различимыми зачатки будущего ромбэнцефалона, мезэнцефалона, прозэнцефалона и ушные плакоды. Одновременно, группы клеток вдоль боковых краев нервной трубки отделяются и формируют парные невральные гребни, которые дают начало основным структурам периферической нервной системы, оболочкам и меланоцитам.

Задняя часть нервной пластины и хорда имеет различный исход: из нее формируется масса клеток, в которых в дальнейшем произойдет канализация и процесс регрессивной дифференцировки с образованием нижнего уровня спинного мозга.

заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть картинку заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Картинка про заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенезаФормирование нервной трубки (схема):
(а) Нервная пластинка формируется из утолщенной эктодермы под влиянием хорды.
(б) Возникает нервный желобок. Видны зачатки нервного гребня.
(в) Нервный гребень хорошо сформирован и его клетки мигрируют в латеральном направлении к своим мишеням.
(г) Закрытие нервной трубки начинается в центральной области; концы (передние и задние нейропоры) закрываются позже.
Закрытая трубка покрыта эктодермой и мезенхимальной тканью.

К 32-33 дню в переднем мозговой пузыре формируются телэнцефалические пузыри и дифференцируется промежуточный мозг, так что на восьмой неделе представлены четыре определяемые клеточные массы в области базальных ядер. Процесс образования пузырей, по всей видимости, происходит под влиянием вентральной индукции хорды, но точный механизм индукции до конца непонятен.

Приблизительно с 30 дня основные индуктивные процессы заканчиваются и начинается клеточная дифференцировка. Размножение примитивных клеток, которые затем становятся как нейронами, так и клетками глии, происходит, главным образом, около полости желудочков и, в меньшей степени, в субвентрикулярной зоне. В глубоких клеточных слоях встречаются митозы (Caviness et al., 2003).

Деление клеток является асимметричным: одна дочерняя клетка мигрирует к внешней стороне во время телофазы, затем возвращается в глубокую область, чтобы начать следующий цикл; так называемая интракинетическая миграция остается в желудочковой зоне. Другая клетка покидает желудочковую зону, чтобы начать свое путешествие к кортикальной пластинке.

Пролиферация нейробластов достигает максимума к 15 неделе гестации, снижаясь затем до остановки на 20 неделе. Пролиферация тесно связана с плохо понимаемым процессом запрограммированной клеточной смерти через апоптоз. Активность процессов апоптоза повышается в то же время, когда пролиферация уменьшается. Фактическая пропорция умирающих клеток у человека точно неизвестна. Вероятнее всего, этот процесс варьирует в зависимости от локализации и может в некоторых областях затрагивать более 30-50% сформировавшихся клеток.

Кортикогенез частично изучен за последние два десятилетия. В позднем эмбриональном периоде (45-50 дни гестации) примитивные кортикопетальные волокна проникают через диэнцефальную борозду и распространяются под телэнцефальной мягкой мозговой оболочкой; нейроны, по всей видимости, в пределах этих волокон формируют зародышевый плексиформный слой (ИПС) (Bentivoglio et al., 2003) или препластинку. ИПС предшествует миграции нейронов, формирующей кортикальную пластинку, и служит опорой мигрирующим клеткам.

заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть картинку заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Картинка про заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенезаСхематическое изображение нейрональной миграции вдоль радиальных глиальных проводников. Поперечное сечение нервной трубки (с разрешения Р. Evrard, Cliniques Saint-Luc).
NL: Эмбриональная стадия — равномерно распределенные глиальные проводники, первая стрелка: миграция нейронов направлена к глубоким кортикальным слоям вдоль глиальных проводников,
в это время сгруппированных в пучки, изогнутая стрелка: поздние стадии нейрональной миграции (слои II и III).
Прогрессирующая дефасцикуляция глиальных проводников.
rl: Картина у «шатающихся» мутантных мышей, у которых не происходит дефасцикуляции.

Мигрирующие нейроны делят корковую зону на поверхностную часть, которая будет составлять молекулярный слой или слой I, в основном содержащий клетки Кахаля-Ретциуса и их отростки (Sarnat и Flores-Sarnat, 2002, Rakic и Zecevic, 2003) и глубокий слой, называемый субпластинкой (или слоем VII), который исчезает до окончания внутриутробной жизни. Клетки КахаляРетциуса играют важную роль в окончательной судьбе пирамидальных клеток, вероятно, с помощью секретируемого рилина (Crino, 2001, Assadi et al, 2003). Большинство из них исчезает за счет апоптоза в возрасте до одного года. Субпластинки нейрона действуют как «переключатель» для кортикопетальных талямических аксонов до того, как клетки четвертого слоя начнут функционировать. Поздние мигрирующие клетки, которые сформируют слои со II по VI дефинитивной коры, перемещаются способом «наизнанку», то есть молодые генерированные поздне-мигрирующие клетки образуют более поверхностные слои (слой II) корковой пластины, в то время как большие пирамидные клетки слоев V и VI мигрировали раньше.

Большинство нейронов будущей коры мозга перемещается между 10-й и 18-й неделями гестации, и полный комплекс корковых нейронов по существу завершается к 20-й неделе. Однако клеточная миграция продолжается в более медленном темпе на протяжении беременности, и некоторые клетки, например, зернистые мозжечковые и гиппокампальные, мигрируют постнатально (Sarnat, 1987). Некоторый корковый нейрогенез сохраняется в течение жизни, особенно в средней височной доле и мозжечке (Gage, 2002).

Нейрональная миграция является сложным процессом, который отличается в зависимости от типов нейронов. Радиальная миграция затрагивает большинство (вероятно, 75%) клеток-предшественниц, предназначенных для образования пирамидных нейронов. Они мигрируют вдоль глиальных проводников, которые простираются от желудочковой (пролиферативной) зоны к пиальной поверхности нервной трубки и производных структур (Rakic, 1981, Williams и Caviness, 1984). Глиальные проводники позднее превращаются в астроциты, завершая радиальную миграцию. Несколько клеток используют одни и те же глиальные волокна при перемещении, что может отвечать за модульную организацию коры, единую для млекопитающих (Rockel et al., 1980), модули представляют собой функциональные единицы коры. Функциональные единицы видов млекопитающих отличаются количеством, а не структурой. Не все нейроны следуют точно за особым глиальным проводником.

Другие клетки-предшественницы, которые затем станут интернейронами, отделяются от проводника и мигрируют в перпендикулярном направлении (Walsh, 1995, Caviness et al., 2003), часть может направиться к соседним проводникам. Некоторые клетки зарождаются в ганглионарных возвышениях в базальном мозге и мигрируют тангенциально (Jimenez et al., 2002, Bystron et al., 2005, Kanatani et al., 2005). Они следуют по до сих пор плохо известному маршруту, возможно, вдоль аксональных пучков к корковой пластине. Большинство, вероятно, интернейроны, в основном ГАМК-эргические, тогда как пирамидальные (глутаматэргические) клетки мигрируют радиально. Эти разнообразные маршруты могут объяснить широкое распространение в коре многочисленных постмиграционных нейронов, образованных из одного клона (Walsh и Серко, 1993). Мигрирующие нейробласты направляются к своим окончательным местам рядом сигнальных систем, особенно биохимическими, которые контролируются многочисленными генами, в настоящее время интенсивно изучаемыми (Sarnat и Flores-Sarnat, 2002, Crino, 2004).

Вторая половина гестации характеризуется быстрым увеличением длины и сложности дендритов и аксонов посредством установления синапсов, с созреванием и тонкой организацией коры. В результате быстро увеличивается вес мозга и процесс образования борозд, необходимый для размещения интенсивно увеличивающейся площади коры. Борозды второго и третьего порядка возникают между 7-м и 9-м месяцами беременности, и большинство извилин присутствует в 28 недель. Полная ламинарная структура коры формируется к моменту рождения. Завершающим формирование центральной нервной системы моментом является снижение количества и плотности синапсов в результате развития нейрональных процессов и запрограммированной апоптозом клеточной смерти.

Дендриты, аксоны и синапсы развиваются с огромной скоростью, и многие ранее образованные синусы в итоге исчезают. Развитие дендритов, аксональное ветвление и формирование дендритных корешков продолжается до четвертого года жизни. Глиальное развитие является сложным процессом, разнообразные предшественники имеют неодинаковый исход. Некоторые превращаются в радиальные глиальные волокна, используемые мигрирующими нейронами. Многие астроциты образуются из персистирующей перивентрикулярной пролиферирующей зоны после окончания процессов миграции (Gressens et al., 1992). Миелин начинает образовываться приблизительно в 30 недель, но большая часть процесса образования миелина происходит в постнатальном периоде (Yakovlev и Lecours, 1967, Brody et al., 1987).

заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть картинку заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Картинка про заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза

Редактор: Искандер Милевски. Дата публикации: 28.11.2018

Источник

PsyAndNeuro.ru

Развитие нервной системы

заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть картинку заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Картинка про заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза

Уже не первый день голубым пламенем горит дискуссия о том, “происходит ли в мозге взрослого порядочного человека нейрогенез?”. Так, в исследовании, опубликованном в Nature, заявляется, что, вопреки данным множества научных открытий последних 20 лет, в мозге взрослого человека не образуются новые нейроны (об этом подробно уже написал Медач). Если это действительно так, то мечты о том, что нейрогенез поможет в лечении заболеваний мозга, останутся несбыточными. Однако если с нейрогенезом всё пока неоднозначно, то с развитием нервной системы всё более-менее понятно, к тому же имеет важное клиничсекое значение, в т.ч. для психиатрии. По этому поводу у нас есть хороший материал на данную тему.

Онтогенез делится на пренатальный и постнатальный периоды. Нервная система начинает закладываться уже со второй недели пренатального периода. Из внешнего зародышевого листка – эктодермы – формируется утолщение – первичная полоска. Под ней, между эктодермой и энтодермой мигрирует тяж клеток и образует нотохорд, который служит временным скелетом для зародыша. Эктодерма, окружающая нотохорд, утолщается и формирует нервную пластинку. Далее, клетки нервной пластинки делятся, образуя нервную бороздку и нервные валики. Со временем валики смыкаются над бороздкой, образуя нервную трубку – это процесс нейруляции.

Одновременно происходит погружение нервной трубки вовнутрь зародыша и формирование и нервных гребней по бокам вдоль нее. На головном конце нервной трубки образуются три первичных мозговых пузыря, из которых впоследствии формируется головной мозг, на каудальном же конце нервная трубка соединяется со спинным мозгом. Нервный гребень в последствии дает начало образованию периферической нервной системе. Ткани, образующие нервную бороздку, и, в последствии, нервную трубку, состоят из нейробластов и спонгиобластов, из первых образуются нейроны, из вторых — клетки глии.

заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть картинку заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Картинка про заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза

На четвертой неделе беременности передний и задний первичные пузыри перешнуровываются, образуя в целом уже пять пузырей. Из заднего образуется продолговатый мозг, из четвертого — варолиев мост и мозжечок, из третьего – средний мозг, из второго — зрительные бугры, гипоталамическая область, паллидум (бледный шар), из переднего – полушария головного мозга и неостриатум (полосатое тело).

По завершении нейруляции часть клеток нервного гребня мигрируют в брюшную полость, формируя вегетативные узлы и мозговое вещество надпочечников. Другие клетки образуют ганглиозную пластинку, делящуюся на ганглиозные валики. Они дают начало спинальным ганглиям, периферическим ганглионарным нейронам симпатической нервной системы, шванновским клеткам, а также клеткам, образующим внутренние листки оболочек мозга. Клетки ганглиозных валиков дифференцируются сначала в биполярные, а затем в псевдоуниполярные чувствительные нервные клетки, центральный отросток которых уходит в ЦНС, а периферический — к рецепторам других тканей и органов, образуя афферентную часть периферической соматической нервной системы.

заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть картинку заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Картинка про заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза

С пятого месяца пренатального развития начинается миелинизация нейронов, которая завершается в 5-7 лет.

Эмбриогенез головного мозга

Вскоре после формирования трех первичных пузырей начинают развиваться глаза.

В передней (ростральной) части мозговой трубки образуются два первичных мозговых пузыря – архэнцефалон и дейтерэнцефалон. В начале четвертой недели у зародыша дейтерэнцефалон делится на средний (mesencephalon) и ромбовидный (rhombencephalon) пузыри, а архэнцефалон превращается на этой (трехпузырной) стадии в передний мозговой пузырь (prosencephalon). В нижней части переднего мозга отрастают обонятельные лопасти, дающие начало обонятельному эпителию, луковицам и трактам. Из дорзолатеральных стенок образуется сетчатка, зрительные нервы и тракты.

На шестой неделе эмбрионального развития передний и ромбовидный пузыри делятся каждый на два.

Передний пузырь — конечный мозг — разделяется продольной щелью на два полушария, так же разделяется и полость, образуя желудочки. Из-за неравномерного разрастания мозгового вещества образуются извилины. Каждое полушарие делится на четыре доли, желудочки делятся также на 4 части: центральный отдел и три рога желудочка. Серое вещество, распложенное на периферии, образует кору полушарий, а в основании полушарий – подкорковые ядра.

заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Смотреть картинку заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Картинка про заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза. Фото заполните таблицу развитие и дифференциация структур мозга в процессе онтогенеза

1. olfactory 2. optic 3. oculomotor 4. trochlear 5. trigeminal sensory 6. trigeminal motor 7. abducens 8. facial 9. vestibulocochlear 10. glossopharyngeal 11. vagus 12. cranial accessory 13. spinal accessory 14. hypoglossal 15. cervical I, II, III and IV

Задняя часть переднего пузыря является теперь промежуточным мозгом. Боковые стенки его преобразуются в зоительные бугры – таламус. В вентральной бласти (гипоталамус) образуется выпячивание – воронка, из ее нижнего конца происходит нейрогипофиз.

Третий мозговой пузырь превращается в средний мозг. Его полость превращается в Сильвиев водопровод, который соединяет III и IV желудочки. Из дорзальной стенки развивается четверохолмие, из вентральной — ножки среднего мозга.

Ромбовидный мозг делится на задний и добавочный. Из заднего формируется мозжечок, а из добавочного – продолговатый мозг. Полость превращается в IV желудочек, который сообщается с Сильвиевым водопроводом и с центральным каналом спинного мозга.

Из клеток, расположенных в боковых частях мозговой трубки, образуется спинной мозг. Развивается он быстро и у трехмесячного зародыша почти сформирован. Полость мозговой трубки превращается в канал спинного мозга. Проходящая по боковым стенкам спинного мозга и стволового отдела головного мозга парная пограничная борозда (sulcus limitons) делит мозговую трубку на основную (вентральную) и крыловидную (дорзальную) пластинки. Из основной пластинки формируются моторные структуры (передние рога спинного мозга, двигательные ядра черепно-мозговых нервов). Над пограничной бороздой из крыловидной пластинки развиваются сенсорные структуры (задние рога спинного мозга, сенсорные ядра ствола мозга), в пределах самой пограничной борозды — центры вегетативной нервной системы.

Весь передний мозг развивается из крыловидной пластинки, поэтому в нем есть только сенсорные структуры.

После рождения ребенка начинается постнатальный онтогенез нервной системы. Головной мозг новорожденного весит 300—400 г. После рождения прекращается образование новых нейронов. К восьмому месяцу после рождения вес мозга удваивается, а к 4—5 годам утраивается. Масса мозга растет в основном за счет увеличения количества отростков и их миелинизации. После 50 лет мозг уплощается, вес его падает и в старости может уменьшиться на 100 г.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *