какие личностные образовательные результаты формируются в процессе обучения информатики

Какие личностные образовательные результаты формируются в процессе обучения информатики

Требования к предметным результатам освоения основной образовательной программы основного общего образования по информатике

Требования к предметным результатам освоения основной образовательной программы основного общего образования по информатике

Предмет «Информатика» на ступени основного общего образования изучается в рамках предметной области «Математика и информатика» и является обязательным для изучения учебным предметом.

Изучение предметной области «Математика и информатика» должно обеспечить:

В результате изучения предметной области «Математика и информатика» обучающиеся развивают логическое и математическое мышление, получают представление о математических моделях; овладевают математическими рассуждениями; учатся применять математические знания при решении различных задач и оценивать полученные результаты; овладевают умениями решения учебных задач; развивают математическую интуицию; получают представление об основных информационных процессах в реальных ситуациях.

Предметные результаты изучения предметной области «Математика и информатика» ( Математика. Алгебра. Геометрия. Информатика) должны отражать :

1) формирование представлений о математике как о методе познания действительности, позволяющем описывать и изучать реальные процессы и явления;

2) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;

4) овладение символьным языком алгебры, приёмами выполнения тождественных преобразований выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умения моделировать реальные ситуации на языке алгебры, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат;

5) овладение системой функциональных понятий, развитие умения использовать функционально-графические представления для решения различных математических задач, для описания и анализа реальных зависимостей;

б) овладение геометрическим языком; развитие умения использовать его для описания предметов окружающего мира; развитие пространственных представлений, изобразительных умений, навыков геометрических построений;

7) формирование систематических знаний о плоских фигурах и их свойствах, представлений о простейших пространствеиных телах; развитие умений моделирования реальных ситуаций на языке геометрии, исследования построенной модели с использованием геометрических понятий и теорем, аппарата алгебры, решения геометрических и практических задач;

8) овладение простейшими способами представления и анализа статистических данных; формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, простейших вероятностных моделях; развитие умений извлекать информацию, представленную в таблицах, на диаграммах, графиках, описывать и анализировать массивы числовых данных с помощью подходящих статистических характеристик, использовать понимание вероятностных свойств окружающих явлений при принятии решений;

9) развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, компьютера; пользоваться оценкой и прикидкой при практических расчётах;

10) формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;

11) формирование представления об основных изучаемых понятиях (информация, алгоритм, модель) и их свойствах;

12) развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами – линейной, условной и циклической;

13) формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей – таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;

14) формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Источник

Какие личностные образовательные результаты формируются в процессе обучения информатики

Автор: Потылицына Любовь Викторовна

Организация: МБОУ СШ № 78

Населенный пункт: г. Красноярск

Личностные результаты обучающегося при освоении уроков информатики в дистанционной форме

1. Личностные результаты — это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении информатики в основной школе, являются:

• наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества;

• понимание роли информационных процессов в современном мире;

• владение первичными навыками анализа и критичной оценки получаемой информации;

• ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;

• развитие чувства личной ответственности за качество окружающей информационной среды;

• способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества;

• готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;

• способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности;

• способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

2. Метапредметные результаты — освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в других жизненных ситуациях. Основными метапредметными результатами, формируемыми при изучении информатики в основной школе, являются:

• владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.;

• владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

• владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;

• владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;

• владение основными универсальными умениями информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;

• владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т. д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;

• ИКТ-компетентность — широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства (обращение с устройствами ИКТ; фиксация изображений и звуков; создание письменных сообщений; создание графических объектов; создание музыкальных и звуковых сообщений; создание, восприятие и использование гипермедиасообщений; коммуникация и социальное взаимодействие; поиск и организация хранения информации; анализ информации).

3. Предметные результаты — включают: освоенные обучающимися в ходе изучения учебного предмета умения, специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами. В соответствии с Федеральным государственным образовательным стандартом общего образования основные предметные результаты изучения информатики в основной школе отражают:

• формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;

• формирование представления об основных изучаемых понятиях — «информация», «алгоритм», «модель» — и их свойствах;

• развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами — линейной, условной и циклической;

• формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей — таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;

• формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Выпускник научится:

ï различать содержание основных понятий предмета: информатика, информация, информационный процесс, информационная система, информационная модель и др.;

ï различать виды информации по способам ее восприятия человеком и по способам ее представления на материальных носителях;

ï раскрывать общие закономерности протекания информационных процессов в системах различной природы;

ï приводить примеры информационных процессов – процессов, связанные с хранением, преобразованием и передачей данных – в живой природе и технике;

ï классифицировать средства ИКТ в соответствии с кругом выполняемых задач;

ï узнает о назначении основных компонентов компьютера (процессора, оперативной памяти, внешней энергонезависимой памяти, устройств ввода-вывода), характеристиках этих устройств;

ï определять качественные и количественные характеристики компонентов компьютера;

ï узнает об истории и тенденциях развития компьютеров; о том как можно улучшить характеристики компьютеров;

ï узнает о том, какие задачи решаются с помощью суперкомпьютеров.

Выпускник получит возможность (углублённый уровень):

ï осознано подходить к выбору ИКТ–средств для своих учебных и иных целей;

ï узнать о физических ограничениях на значения характеристик компьютера.

Математические основы информатики

Выпускник научится:

ï описывать размер двоичных текстов, используя термины «бит», «байт» и производные от них; использовать термины, описывающие скорость передачи данных, оценивать время передачи данных;

ï кодировать и декодировать тексты по заданной кодовой таблице;

ï оперировать понятиями, связанными с передачей данных (источник и приемник данных: канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи);

ï определять минимальную длину кодового слова по заданным алфавиту кодируемого текста и кодовому алфавиту (для кодового алфавита из 2, 3 или 4 символов);

ï определять длину кодовой последовательности по длине исходного текста и кодовой таблице равномерного кода;

ï записывать в двоичной системе целые числа от 0 до 1024; переводить заданное натуральное число из десятичной записи в двоичную и из двоичной в десятичную; сравнивать числа в двоичной записи; складывать и вычитать числа, записанные в двоичной системе счисления;

ï записывать логические выражения, составленные с помощью операций «и», «или», «не» и скобок, определять истинность такого составного высказывания, если известны значения истинности входящих в него элементарных высказываний;

ï определять количество элементов в множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения;

ï использовать терминологию, связанную с графами (вершина, ребро, путь, длина ребра и пути), деревьями (корень, лист, высота дерева) и списками (первый элемент, последний элемент, предыдущий элемент, следующий элемент; вставка, удаление и замена элемента);

ï описывать граф с помощью матрицы смежности с указанием длин ребер (знание термина «матрица смежности» не обязательно);

ï познакомиться с двоичным кодированием текстов и с наиболее употребительными современными кодами;

ï использовать основные способы графического представления числовой информации, (графики, диаграммы).

Выпускник получит возможность (углублённый уровень):

ï познакомиться с примерами математических моделей и использования компьютеров при их анализе; понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием;

ï узнать о том, что любые дискретные данные можно описать, используя алфавит, содержащий только два символа, например, 0 и 1;

ï познакомиться с тем, как информация (данные) представляется в современных компьютерах и робототехнических системах;

ï познакомиться с примерами использования графов, деревьев и списков при описании реальных объектов и процессов;

ï ознакомиться с влиянием ошибок измерений и вычислений на выполнение алгоритмов управления реальными объектами (на примере учебных автономных роботов);

ï узнать о наличии кодов, которые исправляют ошибки искажения, возникающие при передаче информации.

Алгоритмы и элементы программирования

Выпускник научится:

ï составлять алгоритмы для решения учебных задач различных типов;

ï выражать алгоритм решения задачи различными способами (словесным, графическим, в том числе и в виде блок-схемы, с помощью формальных языков и др.);

ï определять наиболее оптимальный способ выражения алгоритма для решения конкретных задач (словесный, графический, с помощью формальных языков);

ï определять результат выполнения заданного алгоритма или его фрагмента;

ï использовать термины «исполнитель», «алгоритм», «программа», а также понимать разницу между употреблением этих терминов в обыденной речи и в информатике;

ï выполнять без использования компьютера («вручную») несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных, записанные на конкретном язык программирования с использованием основных управляющих конструкций последовательного программирования (линейная программа, ветвление, повторение, вспомогательные алгоритмы);

ï составлять несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных с использованием основных управляющих конструкций последовательного программирования и записывать их в виде программ на выбранном языке программирования; выполнять эти программы на компьютере;

ï использовать величины (переменные) различных типов, табличные величины (массивы), а также выражения, составленные из этих величин; использовать оператор присваивания;

ï анализировать предложенный алгоритм, например, определять какие результаты возможны при заданном множестве исходных значений;

ï использовать логические значения, операции и выражения с ними;

ï записывать на выбранном языке программирования арифметические и логические выражения и вычислять их значения.

Выпускник получит возможность (углублённый уровень):

ï познакомиться с использованием в программах строковых величин и с операциями со строковыми величинами;

ï создавать программы для решения задач, возникающих в процессе учебы и вне ее;

ï познакомиться с задачами обработки данных и алгоритмами их решения;

ï познакомиться с понятием «управление», с примерами того, как компьютер управляет различными системами (роботы, летательные и космические аппараты, станки, оросительные системы, движущиеся модели и др.);

ï познакомиться с учебной средой составления программ управления автономными роботами и разобрать примеры алгоритмов управления, разработанными в этой среде.

Использование программных систем и сервисов

Выпускник научится:

ï классифицировать файлы по типу и иным параметрам;

ï выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы);

ï разбираться в иерархической структуре файловой системы;

ï осуществлять поиск файлов средствами операционной системы;

ï использовать динамические (электронные) таблицы, в том числе формулы с использованием абсолютной, относительной и смешанной адресации, выделение диапазона таблицы и упорядочивание (сортировку) его элементов; построение диаграмм (круговой и столбчатой);

ï использовать табличные (реляционные) базы данных, выполнять отбор строк таблицы, удовлетворяющих определенному условию;

ï анализировать доменные имена компьютеров и адреса документов в Интернете;

ï проводить поиск информации в сети Интернет по запросам с использованием логических операций.

Выпускник овладеет (как результат применения программных систем и интернет-сервисов в данном курсе и во всем образовательном процессе):

ï навыками работы с компьютером; знаниями, умениями и навыками, достаточными для работы с различными видами программных систем и интернет-сервисов (файловые менеджеры, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии); умением описывать работу этих систем и сервисов с использованием соответствующей терминологии;

ï различными формами представления данных (таблицы, диаграммы, графики и т. д.);

ï приемами безопасной организации своего личного пространства данных с использованием индивидуальных накопителей данных, интернет-сервисов и т. п.;

ï основами соблюдения норм информационной этики и права;

ï познакомится с программными средствами для работы с аудиовизуальными данными и соответствующим понятийным аппаратом;

ï узнает о дискретном представлении аудиовизуальных данных.

Выпускник получит возможность (углублённый уровень):

ï узнать о данных от датчиков, например, датчиков роботизированных устройств;

ï практиковаться в использовании основных видов прикладного программного обеспечения (редакторы текстов, электронные таблицы, браузеры и др.);

ï познакомиться с примерами использования математического моделирования в современном мире;

ï познакомиться с принципами функционирования Интернета и сетевого взаимодействия между компьютерами, с методами поиска в Интернете;

ï познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами подлинности (пример: наличие электронной подписи); познакомиться с возможными подходами к оценке достоверности информации (пример: сравнение данных из разных источников);

ï узнать о том, что в сфере информатики и ИКТ существуют международные и национальные стандарты;

ï узнать о структуре современных компьютеров и назначении их элементов;

ï получить представление об истории и тенденциях развития ИКТ;

ï познакомиться с примерами использования ИКТ в современном мире;

ï получить представления о роботизированных устройствах и их использовании на производстве и в научных исследованиях.

Источник

Изучение информатики в условиях ФГОС

Ищем педагогов в команду «Инфоурок»

Выступление на педагогическом совете школы на тему: «Изучение информатики в условиях ФГОС»

Учитель Летшова Л.В.

В соответствии с Федеральным государственным образовательным стандартом основного общего образования (ФГОС ООО) курс информатика входит в предметную область «Математика и информатика». В учебном (образовательном) плане основного общего образования на изучение курса информатики отводится по 1 часу в неделю в VII-IX классах с общим количеством часов – 105. Курс информатики основной школы является частью непрерывного курса информатики, который включает в себя также пропедевтический курс в начальной школе и обучение информатике в старших классах (на базовом или профильном уровне). К концу обучения начальной школы (в соответствии с ФГОС начального общего образования) обучающиеся должны обладать ИКТ — компетентностью, достаточной для дальнейшего обучения. В основной школе, начиная с 5-го класса, они закрепляют полученные технические навыки и развивают их в рамках применения при изучении всех предметов. Школа, исходя из конкретных условий, может начинать изучение курса информатики с 5 класса за счет часов школьного учебного плана, выстраивая непрерывный курс информатики в 5–9 классах, обеспечивая его преемственность с курсом информатики начальной школы.

Общеобразовательный курс информатики – один из основных предметов, способный дать обучающимся методологию приобретения знаний об окружающем мире и о себе, обеспечить эффективное развитие общеучебных умений и способов интеллектуальной деятельности на основе методов информатики, становление умений и навыков информационно-учебной деятельности на базе средств ИКТ для решения познавательных задач и саморазвития. Информатика имеет очень большое и всё возрастающее число междисциплинарных связей, причем как на уровне понятийного аппарата, так и на уровне инструментария. Многие положения, развиваемые информатикой, рассматриваются как основа создания и использования информационных и коммуникационных технологий – одного из наиболее значимых технологических достижений современной цивилизации.

Переход на ФГОС ООО предполагает разработку рабочей программы курса информатики. Начиная работу по разработке рабочей программы курса информатики основной школы необходимо изучить все документы по ФГОС ООО и Примерную программу по информатике (2011г). –(я скачала и заказала сборник) Для каждого образовательного учрежделния должна быть разработана рабочая программа курса информатики, которая должна содержать:

пояснительную записку, в которой конкретизируются общие цели основного общего образования с учётом специфики учебного курса;

общую характеристику учебного курса;

описание места учебного курса в учебном плане ОУ;

личностные, метапредметные и предметные результаты освоения учебного курса;

содержание учебного курса;

тематическое планирование с определением основных видов учебной деятельности;

описание учебно-методического и материально-технического обеспечения образовательного процесса;

планируемые результаты изучения учебного курса.

Установленные ФГОС ООО новые требования к результатам обучающихся вызывают необходимость в изменении содержания обучения на основе принципов метапредметности как условия достижения высокого качества образования. В информатике формируются многие виды деятельности, которые носят метапредметный характер, способность к ним образует ИКТ-компетентность. Это моделирование объектов и процессов; сбор, хранение, преобразование и передача информации; информационный аспект управления процессами и пр.Специфика общеобразовательного курса информатики заключается в том, что она активно использует элементы других дисциплин: математики, философии, стилистики, психологии и инженерии. Информатика оперирует с фундаментальными понятиями, которые внешне по-разному проявляются в различных областях знания.

Отличительной особенностью ФГОС ООО является установленные новые требования к результатам обучающихся: личностные, метапредметные и предметные образовательные результаты, которые формируются путем освоения содержания общеобразовательного курса информатики.

Личностные результаты направлены на формирование в рамках курса информатики, прежде всего, личностных универсальных учебных действий.

Метапредметные результаты нацелены преимущественно на развитие регулятивных и знаково-символических универсальных учебных действий через освоение фундаментальных для информатики понятий алгоритма и информационной (знаково-символической) модели.

Предметные результаты в сфере познавательной деятельности отражают внутреннюю логику развития учебного предмета: от информационных процессов через инструмент их познания — моделирование к алгоритмам и информационным технологиям. В этой последовательности формируется, в частности, сложное логическое действие — общий прием решения задачи.

Учитель информатики должен стать конструктом новых педагогических ситуаций, новых заданий, направленных на использование обобщенных способов деятельности и создание учащимися собственных продуктов в освоении знаний.

Чтобы решать эти задачи, каждому учителю важно понять, что, зачем и каким образом изменить в своей деятельности. Особое внимание должно быть уделено изменению методики преподавания информатики, ориентированной на формирование как предметных, так и метапредметных и личностных результатов.( посещение уроков)

Ни один навык не формируется без устойчивого интереса. Познавательный интерес является одним из значимых факторов активизации учебной деятельности. Только в этом случае учение становится личностно – значимой деятельностью, в которой сам обучаемый заинтересован.

Содержание учебного материала и форма, в какой он преподносится обучающимся, должны быть таковы, чтобы сформировать у них целостное представление видение мира и понимание места и роли человека в нем, чтобы получаемая информация становилась для них личностно-значимой.

Как спроектировать урок информатики с метапредметным подходом?

По мнению инициаторов идеи метапредметности, учитель должен не составлять план урока, а инсценировать его.Независимо от многообразия и специфики типов любое учебное занятие должно нести следующие функции и соответствующие им этапы.

Первая функция — введение обучаемых в учебную деятельность., Введение в учебную деятельность предполагает:

а) создание у обучаемых учебной мотивации («мотив» — побудитель к действию, «мотивация» — процесс побуждения, стимулирования мотивов);

б) осознание и принятие учащимися учебной цели.

Таким образом, вначале учебного занятия надо сделать две важные вещи: заинтересовать обучаемых и сделать так, чтобы они поняли, чему будут учиться.

Вторая функция, которую учитель должен предусмотреть, создавая проект учебного занятия — создание учебной ситуации, т.е. такого действа, в котором будут достигаться учебные цели.

Для создания учебной ситуации учителю нужны особые задачи, которые нацелены на получение результата, содержащегося в условии самой задачи. Особенность учебных задач состоит в том, что они нацелены на усвоение способа действия (как решать?), в ходе которого происходит развитие их мышления, формируются познавательные процессы. Важно помнить, что решение учебной задачи — это не продукт, а средство достижения целей учебной деятельности. Именно в процессе решения задач происходит реализация фундаментальности и метапредметности. При этом речь идет об освоении полного цикла решения задачи, а именно:

построение, анализ и оценка модели;

разработка и исполнение алгоритма в рамках данной модели;

анализ и использование результатов.

Именно умения самостоятельно поставить задачу, найти метод ее решения, построить алгоритм, т. е. описать последовательность шагов, приводящих к необходимому результату (или применять уже готовые программные продукты), правильно оценить и использовать полученный результат, делают человека по-настоящему готовым к жизни в современном, быстро меняющемся мире. В процессе решения задач формируется язык, общий для многих научных областей.

Третья функция, которую должен спроектировать учитель — обеспечение учебной рефлексии.

Примерные вопросы для организации учебной рефлексии:

«Что ты делал?» (вопрос аналитического жанра, призывающий ученика воспроизвести как можно подробнее свои действия до затруднения);

«Что у тебя не получается?» (вопрос нацелен на поиск учащимся «места» затруднения, ошибки);

«Какова причина твоего затруднения или ошибки?» (критический вопрос);

«Как надо выйти из затруднения?» (вопрос, ориентированный на построение учеником нормы действия).

Если ученики не могут построить своей версии из сложившегося положения, то учитель либо еще раз должен повторить демонстрацию, но с новыми акцентами на тех местах, которые вызвали у обучаемых затруднение, либо прочитать лекцию (цикл лекций), в которой дается информация, необходимая для решения задачи такого типа, которая решалась учениками. Важно подчеркнуть, что в подобной ситуации исчезает проблема «отсутствия интереса у обучаемых к учебе». Лекция читается не тогда, когда учащиеся еще не знают, куда ее «поместить в своей голове» (потому часто теряют интерес), а «под потребность» — намаявшись с затруднениями, построив свои предположения, они готовы и хотят слушать педагога. Место теоретической лекции оправдано.

Четвертая функцияфункция обеспечения контроля за деятельностью обучаемых. В учебной деятельности учитель должен контролировать изменения, происшедшие в ученике. Именно эти изменения являются действительным продуктом учебной деятельности. Для самого обучаемого контроль за правильностью выполнения задания, означает направленность сознания на собственную деятельность. Контроль имеет ценность только в том случае, когда он постепенно переходит в самоконтроль.

Таким образом, проектируя замысел современного учебного занятия по информатике, учитель должен стимулировать учебные мотивы ученика, активизировать учебную деятельность, обеспечивать рефлексию учебной деятельности и контроль за процессом и результатами деятельности обучаемого.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *